
ConcurrentQuantum Separation Logic for
Fine-Grained Parallelism
YUSUKE MATSUSHITA, Kyoto University, Japan

KENGO HIRATA, University of Edinburgh, United Kingdom and Kyoto University, Japan

RYO WAKIZAKA, Kyoto University, Japan

A promising approach to efficient quantum computation is to execute subroutines in parallel at a
fine-grained level. While such parallelism is subject to tricky bugs, there was no quantum program

logic that could modularly verify the correctness of such parallelism.

To overcome this situation, we propose novel concurrent quantum separation logic that can

modularly reason about quantum programs under fine-grained parallelism. Our logic enables

flexible reasoning about quantum superposition via new proof rules for linearly combining Hoare

triples. Also, our logic introduces fractional tokens for sharing the same qubits between parallel

subroutines, introducing new reasoning rules for promoting partial ownership into full ownership

by atomicity. We demonstrate the effectiveness of our logic by verifying a non-trivial parallelized

quantum program.

1 Introduction
Today, quantum computers are steadily becoming larger, and interest in realizing efficient

quantum computation has grown. A promising approach to that is to execute subroutines in

parallel at a fine-grained level [Gidney and Ekerå 2021; Häner et al. 2022]. One practical goal
would be the automated parallelization of quantum programs, statically by the compiler or

dynamically by the runtime. While such parallelism is subject to tricky bugs, there was no

quantum program logic that could modularly verify the correctness of such parallelism.

To tackle state mutation under concurrency, concurrent separation logic [O’Hearn 2004;

Brookes 2004; Brookes and O’Hearn 2016] should be a great fit, but existing quantum

separation logic [Zhou et al. 2021; Le et al. 2022; Su et al. 2024] unfortunately supported

neither concurrency nor sharing of qubits, which is crucial for fine-grained parallelism.

To overcome this situation, we propose novel concurrent quantum separation logic

that can modularly reason about quantum programs under fine-grained parallelism. Our

logic is particularly new in the following two points. First, unlike the classical setting and

existing quantum separation logic, our logic enables flexible reasoning about quantum
superposition via new proof rules for linearly combining Hoare triples. Second, our logic

features a fractional quantum points-to token 𝑞
𝑟↦→ |𝜓 ⟩, which can be shared between

parallel subroutines, introducing new reasoning rules for promoting partial ownership into

full ownership by atomicity. We demonstrate the effectiveness of our logic by verifying a

non-trivial parallelized quantum program.

∗
This is an extended abstract of the talk presented at PLanQC 2025.

Authors’ Contact Information: Yusuke Matsushita, Kyoto University, Kyoto, Japan, ymat@fos.kuis.kyoto-

u.ac.jp; Kengo Hirata, University of Edinburgh, Edinburgh, United Kingdom and Kyoto University, Kyoto, Japan,

k.hirata@sms.ed.ac.uk; Ryo Wakizaka, Kyoto University, Kyoto, Japan, wakizaka@fos.kuis.kyoto-u.ac.jp.

HTTPS://ORCID.ORG/0000-0002-5208-3106
HTTPS://ORCID.ORG/0009-0005-4416-2655
HTTPS://ORCID.ORG/0000-0001-8762-9335
https://orcid.org/0000-0002-5208-3106
https://orcid.org/0009-0005-4416-2655
https://orcid.org/0000-0001-8762-9335

2 Yusuke Matsushita, Kengo Hirata, and Ryo Wakizaka

2 TargetQuantum Language
Our target quantum language has the following syntax:

Exp ∋ 𝑒 F 𝑞 | ℓ | 𝑛 | () | op(𝑒) | 𝑥 | let 𝑥 = 𝑒1 in 𝑒2

| if 𝑒1 {𝑒2 } else {𝑒3 } | while 𝑒1 {𝑒2 } | 𝑒1 ∥ 𝑒2 | atomic {𝑒 }
| qalloc | qfree 𝑒 | 𝑈 [𝑒] | mkref 𝑒 | ! 𝑒 | 𝑒1 ← 𝑒2

Val ∋ 𝑣 F 𝑞 | ℓ | 𝑛 | () | (𝑣, 𝑣 ′) 𝑒1; 𝑒2 ≜ let _ = 𝑒1 in 𝑒2

We write 𝑞 ∈ Qname for a qubit (name), ℓ ∈ Loc for a heap location, 𝑛 ∈ Z for an integer,

op for pure operators such as +. For concurrency, aside from the standard parallel execution
𝑒1 ∥ 𝑒2, we introduce atomic execution atomic {𝑒 }, which excludes interruption from other

processes while executing 𝑒 . Qubit and heap operations are pretty standard. Quantum

measurements are not yet part of our language, and handling their stochastic behavior

remains future work (see § 6). Please refer to Appendix A for the operational semantics.

3 Motivating Example
As a running example, we consider the following parallelized quantum program:

Process 1 CCY[𝑥, 𝑧,𝑦]; 𝑈1 [𝑧]; 𝑈2 [𝑧]; 𝑈3 [𝑧]; CCZ[𝑥, 𝑧,𝑦]
Process 2 ∥ atomic { X[𝑥]; CH[𝑥,𝑦]; X[𝑥] } (*)

It executes in parallel two processes, which can be illustrated as the following circuits:

𝐶1 ≡

𝑥

𝑦

𝑧

Y Z

𝑈1 𝑈2 𝑈3

𝐶2 ≡
𝑥

𝑦

𝑧

H

The two processes may be executed sequentially (i.e.,𝐶1;𝐶2 or𝐶2;𝐶1), or process 2 may be

executed during the execution of process 1, as illustrated in the following circuit:

𝑥

𝑦

𝑧

Y H Z

𝑈1 𝑈2 𝑈3

It is easy to see that the results are the same across these execution patterns.

Our goal is to prove the correctness of such a parallelized quantum program: regardless

of the execution order, the program should consistently reach the same final state. This

enables a compiler to safely reorder the execution sequence of concurrent circuits, provided

it adheres to the program’s semantics. However, modularly proving the correctness of a

parallelized quantum program like (*) presents the following two challenges:

Challenge 1 Multiple processes may write to the same qubit. In the program (*), both

processes write to the shared qubit 𝑦 in parallel. This is naively a race condition

but actually safe thanks to the commutativity of the gates.

Concurrent Quantum Separation Logic for Fine-Grained Parallelism 3

Challenge 2 Atomic execution should be treated specially. In the program (*), Process

2 writes to 𝑥 but then reverts its value within an atomic execution, and thus does

not interfere with Process 1.

4 OurQuantum Separation Logic
Now we present our core contribution, the concurrent quantum separation logic for fine-

grained parallelism. Please refer to Appendix B for a complete list of proof rules and

Appendix C for the semantic model.

Propositions. Propositions for our separation logic are as follows:

SLProp ∋ 𝑃,𝑄, 𝑅 F 𝑝 | 𝑃 ∧𝑄 | 𝑃 ∨𝑄 | 𝑃→𝑄 | ∀𝑥 . 𝑃𝑥 | ∃𝑥 . 𝑃𝑥
| emp | 𝑃 ∗𝑄 | 𝑃 −∗𝑄 | 𝑞 𝑟↦→ |𝜓 ⟩ | [𝑞]𝑟 | ℓ

𝑟↦→ 𝑣

𝑞 ↦→ |𝜓 ⟩ ≜ 𝑞
1↦→ |𝜓 ⟩ ℓ ↦→ 𝑣 ≜ ℓ

1↦→ 𝑣

We have the standard connectives from separation logic, including the separating conjunc-

tion 𝑃 ∗𝑄 for combining ownership. Any pure proposition 𝑝 ∈ Prop can be embedded.

Notably, we introduce the fractional quantum points-to token𝑞
𝑟↦→ |𝜓 ⟩, a novel proposition

that asserts with a fraction 𝑟 ∈ (0, 1] that the current pure state of the qubits 𝑞 = 𝑞1, . . . , 𝑞𝑛

is |𝜓 ⟩ ∈
(
C2

)⊗𝑛
. It is a quantum analog of the classical points-to token ℓ

𝑟↦→ 𝑣 [Bornat et al.

2005]. Under full ownership 𝑟 = 1, it allows any operation to be performed over the qubits,

while only a read operation is allowed under partial ownership 𝑟 < 1. The model for this

machinery is non-trivial and trickier than the classical setting, since each token may span

over multiple qubits due to superposition; please see Appendix C for the details.

We also introduce the qubit token [𝑞]𝑟 , which asserts with a fraction 𝑟 that the qubit 𝑞 is

allocated and not freed. It is useful for sharing dirty qubits, qubits without state information,

between parallel subroutines. We use the shorthand [𝑞]𝑟 ≜ ∗𝑖 [𝑞𝑖]𝑟 for 𝑞 = 𝑞1, . . . , 𝑞𝑛 .

We have the following proof rules for quantum ownership, as naturally expected:

(𝑞, 𝑞′) ↦→ |𝜓 ⟩ |𝜓 ′⟩ ⊣⊢ 𝑞 ↦→ |𝜓 ⟩ ∗ 𝑞′ ↦→ |𝜓 ′⟩

𝑞
𝑟+𝑟 ′↦→ |𝜓 ⟩ ⊣⊢ 𝑞 𝑟↦→ |𝜓 ⟩ ∗ 𝑞 𝑟 ′↦→ |𝜓 ⟩ [𝑞]𝑟+𝑟 ′ ⊣⊢ [𝑞]𝑟 ∗ [𝑞]𝑟 ′{

emp
}
qalloc

{
𝑞. 𝑞 ↦→ |0⟩ ∗ [𝑞]1

} {
𝑞 ↦→ |0⟩ ∗ [𝑞]1

}
qfree 𝑞

{
emp

}{
(𝑞, 𝑞′) ↦→ |𝜓 ⟩

}
𝑈 [𝑞]

{
(𝑞, 𝑞′) ↦→ (𝑈 ⊗ I) |𝜓 ⟩

}
Quantum superposition. One peculiar phenomenon in quantum computation is quantum
superposition. While we can easily reason about classical conditional branching by case

analysis between 1 and 0 on a classical bit, reasoning about controlled gates such as CX is

much trickier because a qubit can be an arbitrary quantum superposition 𝛼 |1⟩ + 𝛽 |0⟩. To
address this, we newly introduce the following proof rule for linearly combining Hoare

triples, unlike existing quantum separation logic:{
𝑞 ↦→ |𝜓 ⟩ ∗ 𝑃

}
𝑒
{
𝑞 ↦→ |𝜑⟩ ∗ 𝑄

} {
𝑞 ↦→ |𝜓 ′⟩ ∗ 𝑃

}
𝑒
{
𝑞 ↦→ |𝜑 ′⟩ ∗ 𝑄

}
𝑃,𝑄 : precise{

𝑞 ↦→ (𝛼 |𝜓 ⟩ + 𝛽 |𝜓 ′⟩) ∗ 𝑃
}
𝑒
{
𝑞 ↦→ (𝛼 |𝜑⟩ + 𝛽 |𝜑 ′⟩) ∗ 𝑄

}
qptto-lincomb

4 Yusuke Matsushita, Kengo Hirata, and Ryo Wakizaka

The exactness judgment 𝑃 : precisemeans that the SL proposition 𝑃 is satisfied by a unique

(or no) resource (for example, [𝑥]1 : precise and ⊥ : precise hold but (∃𝑞. [𝑥]𝑞) : precise
does not hold). At a high level, this performs a ‘case analysis’ over the bases |𝜓 ⟩ and |𝜓 ′⟩
of the input pure state 𝛼 |𝜓 ⟩ + 𝛽 |𝜓 ′⟩. This actually solves Challenge 1 in § 3, because the

‘case analysis’ over 𝑥 eliminates the spurious race condition. See the discussion in § 5 for

details.

Concurrency. We have the following proof rules for concurrency:{
𝑃
}
𝑒
{
𝑣 . 𝑄𝑣

} {
𝑃 ′

}
𝑒′

{
𝑣 ′. 𝑄 ′

𝑣′
}{

𝑃 ∗ 𝑃 ′
}
𝑒 ∥ 𝑒′

{
(𝑣, 𝑣 ′) . 𝑄𝑣 ∗ 𝑄 ′𝑣′

}
parallel

{
𝑃
}
𝑒
{
𝑣 . 𝑄𝑣

}{
𝑃
}
atomic {𝑒 }

{
𝑣 . 𝑄𝑣

}
atomic

Parallel execution 𝑒 ∥ 𝑒′ admits the standard proof rule with the separating conjunction.

For atomic execution atomic {𝑒 }, we simply verify the Hoare triple over 𝑒 , with the help

of promotion by atomicity explained below.

Promotion by atomicity. We say an expression 𝑒 is atomic if 𝑒 can take only one step. In

particular, atomic execution atomic {𝑒 } and matrix application𝑈 [𝑞] are atomic.

For atomic expressions, we can use the following rules for promotion by atomicity:

𝑒 is atomic 𝑃 : out 𝑞
{
𝑞 ↦→ |𝜓 ⟩ ∗ [𝑞]1 ∗ 𝑃

}
𝑒
{
𝑣 . 𝑞 ↦→ |𝜓 ⟩ ∗ [𝑞]1 ∗ 𝑄𝑣

}{
𝑞

𝑟↦→ |𝜓 ⟩ ∗ 𝑃
}
𝑒
{
𝑣 . 𝑞

𝑟↦→ |𝜓 ⟩ ∗ 𝑄𝑣

}
qptto-promote

𝑒 is atomic 𝑃 : out 𝑞 ∀ |𝜓 ⟩ .
{
𝑞 ↦→ |𝜓 ⟩ ∗ [𝑞]1 ∗ 𝑃

}
𝑒
{
𝑣 . 𝑞 ↦→ |𝜓 ⟩ ∗ [𝑞]1 ∗ 𝑄𝑣

}{
[𝑞]𝑟 ∗ 𝑃

}
𝑒
{
𝑣 . [𝑞]𝑟 ∗ 𝑄𝑣

}
qtok-promote

By exploiting atomicity, partial ownership of a fractional points-to 𝑞
𝑟↦→ |𝜓 ⟩ (qptto-

promote) or qubit [𝑞]𝑟 (qtok-promote) token can be promoted into the full points-to and

qubit tokens. Here, the judgment 𝑃 : out 𝑞 means that the proposition 𝑃 does not own any

ownership over the qubits 𝑞. For example, 𝑞′ ↦→ |𝜓 ⟩ : out 𝑞 holds if 𝑞′ ∉ {𝑞}. Promotion

solves Challenge 2 in § 3, enabling temporary writes in an atomic execution.

5 Verification of the Motivating Example
Now we demonstrate how our concurrent quantum separation logic can verify the concur-

rent quantum program (*) presented in § 3.

First, we apply qptto-lincomb to decompose the superposition of the pure state |𝜒⟩ =
𝛼 |1⟩ + 𝛽 |0⟩ of the qubit 𝑥 by the basis |1⟩ , |0⟩:{

(𝑥,𝑦, 𝑧) ↦→ |𝜒⟩ |𝜓 ⟩ |𝜑⟩ ∗ [𝑦]1
}{

(𝑥,𝑦, 𝑧) ↦→ |1⟩ |𝜓 ⟩ |𝜑⟩ ∗ [𝑦]1
} {
(𝑥,𝑦, 𝑧) ↦→ |0⟩ |𝜓 ⟩ |𝜑⟩ ∗ [𝑦]1

}{ (
𝑥

1/2
↦→ |1⟩ ∗ (𝑦, 𝑧) ↦→ |𝜓 ⟩ |𝜑⟩

)
∗
(
𝑥

1/2
↦→ |1⟩ ∗ [𝑦]1

) }{ (
𝑥

1/2
↦→ |0⟩ ∗ [𝑦]1 ∗ 𝑧 ↦→ |𝜑⟩

)
∗
(
𝑥

1/2
↦→ |0⟩ ∗ 𝑦 ↦→ |𝜓 ⟩

) }
CCY[𝑥, 𝑧,𝑦]; 𝑈1 [𝑧]; 𝑈2 [𝑧]; 𝑈3 [𝑧]; CCZ[𝑥, 𝑧,𝑦] ∥ atomic { X[𝑥]; CH[𝑥,𝑦]; X[𝑥] }

Concurrent Quantum Separation Logic for Fine-Grained Parallelism 5

{ (
𝑥

1/2
↦→ |1⟩ ∗ (𝑦, 𝑧) ↦→ CZ𝑧𝑦 (I ⊗ 𝑈+) CY𝑧𝑦 (|𝜓 ⟩ |𝜑⟩)

)
∗
(
𝑥

1/2
↦→ |1⟩ ∗ [𝑦]1

) }{ (
𝑥

1/2
↦→ |0⟩ ∗ [𝑦]1 ∗ 𝑧 ↦→ 𝑈+ |𝜑⟩

)
∗
(
𝑥

1/2
↦→ |0⟩ ∗ 𝑦 ↦→ H |𝜓 ⟩

) }{
𝑥 ↦→ |1⟩ ∗ (𝑦, 𝑧) ↦→ CZ𝑧𝑦 (I ⊗ 𝑈+) CY𝑧𝑦 (|𝜓 ⟩ |𝜑⟩) [𝑦]1

}{
𝑥 ↦→ |0⟩ ∗ 𝑦 ↦→ H |𝜓 ⟩ ∗ 𝑧 ↦→ 𝑈+ |𝜑⟩ ∗ [𝑦]1

}{
(𝑥,𝑦, 𝑧) ↦→ If

(
CZ𝑧𝑦 (I ⊗ 𝑈+) CY𝑧𝑦, H ⊗ 𝑈+

)
(|𝜒⟩ |𝜓 ⟩ |𝜑⟩) ∗ [𝑦]1

}
We use the shorthand 𝑈+ ≜ 𝑈3𝑈2𝑈1 and define the linear map If (𝑈1,𝑈0) by If (𝑈1,𝑈0)
(|𝑏⟩ |𝜔⟩) ≜ |𝑏⟩ ·𝑈𝑏 |𝜔⟩ for𝑏 ∈ {1, 0}. The final postcondition says that, regardless of execu-
tion scheduling, the final state of the qubits𝑥,𝑦, 𝑧 is always set to If

(
CZ𝑧𝑦 (I⊗𝑈+) CY𝑧𝑦, H⊗

𝑈+
)
(|𝜒⟩ |𝜓 ⟩ |𝜑⟩). By qptto-lincomb, the verification boils down to the two cases where

the qubit 𝑥 stores |1⟩ (marked green) and |0⟩ (marked blue). Here,

{
𝑃1

}{
𝑃2

}
𝑒
{
𝑄1

}{
𝑄2

}
indicates that both

{
𝑃1

}
𝑒
{
𝑄1

}
and

{
𝑃2

}
𝑒
{
𝑄2

}
hold. Notably, how to split the owner-

ship between two processes in parallel can depend on whether 𝑥 stores |1⟩ or |0⟩. More

concretely, here the full points-to token 𝑦 ↦→ |𝜓 ⟩ over the qubit 𝑦 is given to Process 1

if 𝑥 stores |1⟩ and to Process 2 if 𝑥 stores |0⟩. This solves Challenge 1. Also, we split the
points-to token over the qubit 𝑥 using fractions.

We can verify Process 1 as follows:{
𝑥

1/2
↦→ |1⟩ ∗ (𝑦, 𝑧) ↦→ |𝜓 ⟩ |𝜑⟩

} {
𝑥

1/2
↦→ |0⟩ ∗ [𝑦]1 ∗ 𝑧 ↦→ |𝜑⟩

}
CCY[𝑥, 𝑧,𝑦]{

𝑥
1/2
↦→ |1⟩ ∗ (𝑦, 𝑧) ↦→ CY𝑧𝑦 (|𝜓 ⟩ |𝜑⟩)

} {
𝑥

1/2
↦→ |0⟩ ∗ [𝑦]1 ∗ 𝑧 ↦→ |𝜑⟩

}
𝑈1 [𝑧];𝑈2 [𝑧];𝑈3 [𝑧];{

𝑥
1/2
↦→ |1⟩ ∗ (𝑦, 𝑧) ↦→ (I ⊗ 𝑈+) CY𝑧𝑦 (|𝜓 ⟩ |𝜑⟩)

} {
𝑥

1/2
↦→ |0⟩ ∗ [𝑦]1 ∗ 𝑧 ↦→ 𝑈+ |𝜑⟩

}
CCZ[𝑥, 𝑧,𝑦]{

𝑥
1/2
↦→ |1⟩ ∗ (𝑦, 𝑧) ↦→ CZ𝑧𝑦 (I ⊗ 𝑈+) CY𝑧𝑦 (|𝜓 ⟩ |𝜑⟩)

} {
𝑥

1/2
↦→ |0⟩ ∗ [𝑦]1 ∗ 𝑧 ↦→ 𝑈+ |𝜑⟩

}
Notably, the qubit token [𝑦]1 suffices for performing CCX[𝑥,𝑦, 𝑧] and CCY[𝑥, 𝑧,𝑦] in the

case where 𝑥 stores |0⟩, as the value of 𝑦 remains unchanged.

We can verify Process 2 as follows:{
𝑥

1/2
↦→ |1⟩ ∗ [𝑦]1

} {
𝑥

1/2
↦→ |0⟩ ∗ 𝑦 ↦→ |𝜓 ⟩

}
atomic

{ {
𝑥 ↦→ |1⟩ ∗ [𝑦]1

} {
𝑥 ↦→ |0⟩ ∗ 𝑦 ↦→ |𝜓 ⟩

}
X[𝑥];{

𝑥 ↦→ |0⟩ ∗ [𝑦]1
} {

𝑥 ↦→ |1⟩ ∗ 𝑦 ↦→ |𝜓 ⟩
}
CH[𝑥,𝑦];{

𝑥 ↦→ |0⟩ ∗ [𝑦]1
} {

𝑥 ↦→ |1⟩ ∗ 𝑦 ↦→ H |𝜓 ⟩
}
X[𝑥];{

𝑥 ↦→ |1⟩ ∗ [𝑦]1
} {

𝑥 ↦→ |0⟩ ∗ 𝑦 ↦→ H |𝜓 ⟩
} }{

𝑥
1/2
↦→ |1⟩ ∗ [𝑦]1

} {
𝑥

1/2
↦→ |0⟩ ∗ 𝑦 ↦→ H |𝜓 ⟩

}
Remarkably, we can promote the partial points-to token 𝑥

1/2
↦→ |𝜒⟩ into the full points-to

token 𝑥 ↦→ |𝜒⟩ by exploiting the atomicity of atomic, because the value of 𝑥 is restored

after applying X[𝑥] twice. This solves Challenge 2.

6 Future Work
We plan to apply our separation logic to verify more practical quantum programs. We

are particularly interested in verifying optimization techniques that involve advanced

6 Yusuke Matsushita, Kengo Hirata, and Ryo Wakizaka

concurrency, entangled copying, or uncomputation [Bichsel et al. 2020]. Furthermore, we

aim to develop new methods for automatically parallelizing quantum programs via owner-

ship analysis based on our separation logic. Also, future work remains in extending our

concurrent quantum separation logic to support measurement. A fundamental challenge

is how to extend proof rules like qptto-lincomb for superposition to that setting. For

precise analysis of probabilistic distribution, an approach like outcome separation logic

[Zilberstein et al. 2024] may be a good fit.

References
Benjamin Bichsel, Maximilian Baader, Timon Gehr, and Martin T. Vechev. 2020. Silq: a high-level quantum

language with safe uncomputation and intuitive semantics. In Proceedings of the 41st ACM SIGPLAN
International Conference on Programming Language Design and Implementation, PLDI 2020, London, UK,
June 15-20, 2020, Alastair F. Donaldson and Emina Torlak (Eds.). ACM, 286–300. https://doi.org/10.1145/

3385412.3386007

Richard Bornat, Cristiano Calcagno, Peter W. O’Hearn, and Matthew J. Parkinson. 2005. Permission accounting

in separation logic. In Proceedings of the 32nd ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, POPL 2005, Long Beach, California, USA, January 12-14, 2005, Jens Palsberg and Martín

Abadi (Eds.). ACM, 259–270. https://doi.org/10.1145/1040305.1040327

Stephen Brookes and Peter W. O’Hearn. 2016. Concurrent separation logic. ACM SIGLOG News 3, 3 (2016),
47–65. https://doi.org/10.1145/2984450.2984457

Stephen D. Brookes. 2004. A Semantics for Concurrent Separation Logic. In CONCUR 2004 - Concurrency
Theory, 15th International Conference, London, UK, August 31 - September 3, 2004, Proceedings (Lecture Notes
in Computer Science, Vol. 3170), Philippa Gardner and Nobuko Yoshida (Eds.). Springer, 16–34. https:

//doi.org/10.1007/978-3-540-28644-8_2

Craig Gidney and Martin Ekerå. 2021. How to factor 2048 bit RSA integers in 8 hours using 20 million noisy

qubits. Quantum 5 (2021), 433. https://doi.org/10.22331/Q-2021-04-15-433

ThomasHäner, VadymKliuchnikov,Martin Roetteler, Mathias Soeken, and Alexander Vaschillo. 2022. QParallel:

Explicit Parallelism for Programming Quantum Computers. CoRR abs/2210.03680 (2022). https://doi.org/

10.48550/ARXIV.2210.03680 arXiv:2210.03680

Xuan-Bach Le, Shang-Wei Lin, Jun Sun, and David Sanán. 2022. A quantum interpretation of separating

conjunction for local reasoning of quantum programs based on separation logic. Proc. ACM Program. Lang.
6, POPL (2022), 1–27. https://doi.org/10.1145/3498697

Peter W. O’Hearn. 2004. Resources, Concurrency and Local Reasoning. In CONCUR 2004 - Concurrency
Theory, 15th International Conference, London, UK, August 31 - September 3, 2004, Proceedings (Lecture Notes
in Computer Science, Vol. 3170), Philippa Gardner and Nobuko Yoshida (Eds.). Springer, 49–67. https:

//doi.org/10.1007/978-3-540-28644-8_4

Bonan Su, Li Zhou, Yuan Feng, and Mingsheng Ying. 2024. BI-based Reasoning about Quantum Programs

with Heap Manipulations. arXiv:2409.10153 [quant-ph] https://arxiv.org/abs/2409.10153

Li Zhou, Gilles Barthe, Justin Hsu, Mingsheng Ying, and Nengkun Yu. 2021. A Quantum Interpretation of

Bunched Logic & Quantum Separation Logic. In 36th Annual ACM/IEEE Symposium on Logic in Computer
Science, LICS 2021, Rome, Italy, June 29 - July 2, 2021. IEEE, 1–14. https://doi.org/10.1109/LICS52264.2021.

9470673

Noam Zilberstein, Angelina Saliling, and Alexandra Silva. 2024. Outcome Separation Logic: Local Reasoning

for Correctness and Incorrectness with Computational Effects. Proc. ACM Program. Lang. 8, OOPSLA1
(2024), 276–304. https://doi.org/10.1145/3649821

A Operational Semantics of the TargetQuantum Language
Here we present the operational semantics of the target quantum language of § 2.

https://doi.org/10.1145/3385412.3386007
https://doi.org/10.1145/3385412.3386007
https://doi.org/10.1145/1040305.1040327
https://doi.org/10.1145/2984450.2984457
https://doi.org/10.1007/978-3-540-28644-8_2
https://doi.org/10.1007/978-3-540-28644-8_2
https://doi.org/10.22331/Q-2021-04-15-433
https://doi.org/10.48550/ARXIV.2210.03680
https://doi.org/10.48550/ARXIV.2210.03680
https://arxiv.org/abs/2210.03680
https://doi.org/10.1145/3498697
https://doi.org/10.1007/978-3-540-28644-8_4
https://doi.org/10.1007/978-3-540-28644-8_4
https://arxiv.org/abs/2409.10153
https://arxiv.org/abs/2409.10153
https://doi.org/10.1109/LICS52264.2021.9470673
https://doi.org/10.1109/LICS52264.2021.9470673
https://doi.org/10.1145/3649821

Concurrent Quantum Separation Logic for Fine-Grained Parallelism 7

Transition label. We use the following transition labels in our operational semantics:

Label ∋ 𝐿 F qalloc = 𝑞 | qfree 𝑞 | 𝑈 [𝑞] | mkref 𝑣 = ℓ | ! ℓ = 𝑣 | ℓ ← 𝑣

Labeled transition over expressions. Evaluation contexts have the following form:

𝐾 F · | op(𝑣, 𝐾, 𝑒) | let 𝑥 = 𝐾 in 𝑒 | if 𝐾 {𝑒1 } else {𝑒2 } | 𝐾 ∥ 𝑒 | 𝑒 ∥ 𝐾
| qfree 𝐾 | 𝑈 [𝑣, 𝐾, 𝑒] | mkref 𝐾 | !𝐾 | 𝐾 ← 𝑒 | 𝑣 ← 𝐾

The labeled transition 𝑒
�̄�−→ 𝑒′ (where 𝐿 ∈ Label∗ is a finite sequence of transition labels)

is inductively defined by the following rules:

𝑒
�̄�−→ 𝑒′

𝐾 [𝑒] �̄�−→ 𝐾 [𝑒′]

op(𝑣) = 𝑣 ′
op(𝑣) → 𝑣 ′

let 𝑥 = 𝑣 in 𝑒 → 𝑒 [𝑣/𝑥]

if 𝑏 {𝑒1 } else {𝑒0 } → 𝑒𝑏 while 𝑒1 {𝑒2 } → if 𝑒1 {𝑒2; while 𝑒1 {𝑒2 } }

𝑣1 ∥ 𝑣2 → (𝑣1, 𝑣2)
𝑒1

𝐿1−→ 𝑒2

𝐿2−→ · · · 𝐿𝑛−−→ 𝑣

atomic {𝑒1 }
𝐿1, 𝐿2, ..., 𝐿𝑛−−−−−−−−−→ 𝑣

qalloc
qalloc=𝑞
−−−−−−−−→ 𝑞 qfree 𝑞

qfree𝑞
−−−−−→ () 𝑈 [𝑞]

𝑈 [𝑞]
−−−−→ ()

mkref 𝑣
mkref 𝑣 = ℓ−−−−−−−−→ ℓ ! ℓ

!ℓ = 𝑣−−−−→ 𝑣 ℓ ← 𝑣
ℓ←𝑣−−−→ ()

Here we use the shorthand if 𝑒1 {𝑒2 } ≜ if 𝑒1 {𝑒2 } else { () }.
The labeled infinite transition 𝑒

®𝐿−→ ∞ (where ®𝐿 ∈ Label∗ ∪ Label𝜔 is a possibly infinite
sequence of transition labels) is defined by the following rules:

𝑒1

𝐿1−→ 𝑒2

𝐿2−→ · · · 𝐿𝑘−1−−−→ 𝑒𝑘
𝐿𝑘−−→ · · ·

𝐾 [atomic {𝑒1 }]
𝐿1, 𝐿2, ..., 𝐿𝑘−1, 𝐿𝑘 , ...−−−−−−−−−−−−−−−→ ∞

𝑒1

𝐿1−→ 𝑒2

𝐿2−→ · · · 𝐿𝑛−−→ 𝑒𝑛+1
®𝐿′−→ ∞

𝐾 [atomic {𝑒1 }]
𝐿1, 𝐿2, ..., 𝐿𝑛, ®𝐿′−−−−−−−−−−−→ ∞

Atomicity. We say an expression 𝑒 is atomic if 𝑒
�̄�−→ 𝑒′ entails 𝑒′ ∈ Val for any expression

𝑒′ and labels 𝐿. The following rules hold:

atomic {𝑒 } is atomic

qalloc is atomic qfree 𝑣 is atomic 𝑈 [𝑣] is atomic

mkref 𝑣 is atomic !𝑣 is atomic 𝑣 ← 𝑣 ′ is atomic

Labeled transition over global states. The global state we consider is as follows:

Quantum memory 𝑀 = (qs, |𝜓 ⟩) ∈ Qmem ≜
∐

qs ∈ Powfin Qname

(
C2

)⊗qs
Heap memory 𝐻 ∈ Heap ≜ Loc

fin
⇀ Val

Global state 𝐺 = (𝑀,𝐻) ∈ Glob ≜ Qmem × Heap

8 Yusuke Matsushita, Kengo Hirata, and Ryo Wakizaka

The labeled global state transition 𝐺
𝐿−→ 𝐺 ′ is defined by the following rules:

𝑞 ∉ qs(
(qs, |𝜓 ⟩), 𝐻

) qalloc = 𝑞
−−−−−−−−→

(
(qs ∪ {𝑞}, |𝜓 ⟩qs ⊗ |0⟩𝑞), 𝐻

)
𝑞 ∉ qs(

(qs ∪ {𝑞}, |𝜓 ⟩qs ⊗ |0⟩𝑞), 𝐻
) qfree𝑞
−−−−−→

(
(qs, |𝜓 ⟩), 𝐻

)
𝑞 are pairwise distinct {𝑞} ∩ qs ≠ ∅(

({𝑞} ∪ qs, |𝜓 ⟩), 𝐻
) 𝑈 [𝑞]
−−−−→

(
({𝑞} ∪ qs, 𝑈𝑞 |𝜓 ⟩), 𝐻

)
ℓ ∉ dom𝐻

(𝑀,𝐻) mkref 𝑣 = ℓ−−−−−−−−→ (𝑀,𝐻 {ℓ := 𝑣})

ℓ ∈ dom𝐻 𝑣 = 𝐻 [ℓ]

(𝑀,𝐻) !ℓ = 𝑣−−−−→ (𝑀,𝐻)

ℓ ∈ dom𝐻

(𝑀,𝐻) ℓ← 𝑣−−−−→ (𝑀,𝐻 {ℓ := 𝑣})
Expression-state transition. The expression-state transition (𝑒,𝐺) → (𝑒′,𝐺 ′) is defined
by the following rule:

𝑒
𝐿1,𝐿2,· · · ,𝐿𝑛−−−−−−−−→ 𝑒′ 𝐺1

𝐿1−→ 𝐺2

𝐿2−→ · · · 𝐿𝑛−−→ 𝐺𝑛+1
(𝑒,𝐺1) → (𝑒′,𝐺𝑛+1)

The expression-state infinite transition (𝑒,𝐺) → ∞ is defined by the following rule:

𝑒
𝐿1,𝐿2,...,𝐿𝑘−1,𝐿𝑘 ,...−−−−−−−−−−−−−→ ∞ 𝐺1

𝐿1−→ 𝐺2

𝐿2−→ · · · 𝐿𝑘−1−−−→ 𝐺𝑘

𝐿𝑘−−→ · · ·
(𝑒,𝐺1) → ∞

The reducibility red(𝑒,𝐺) is defined by the following rule:

(𝑒,𝐺) → (𝑒′,𝐺 ′)
red(𝑒,𝐺)

(𝑒,𝐺) → ∞
red(𝑒,𝐺)

B Proof Rules of Our Separation Logic
Judgments. We use the following judgments:

𝑃 ⊢ 𝑄
{
𝑃
}
𝑒
{
𝑣 . 𝑄𝑣

}
𝑃 : out 𝑎

As usual, we introduce the entailment judgment 𝑃 ⊢ 𝑄 and the (partial) Hoare triple{
𝑃
}
𝑒
{
𝑣 . 𝑄𝑣

}
(where 𝑣 is the return value of the execution). We also introduce the

ownership exclusion judgment 𝑃 : out 𝑎, meaning that a proposition 𝑃 ∈ SLProp does not

own a qubit or location 𝑎 ∈ Qname ∪ Loc.
We use the following syntax sugar:

𝑃 ⊣⊢ 𝑄 ≜ (𝑃 ⊢ 𝑄) ∧ (𝑄 ⊢ 𝑃)
{
𝑃
}
𝑒
{
𝑄
}

≜
{
𝑃
}
𝑒
{
_. 𝑄

}
𝑃 : out 𝑎 ≜ ∀𝑖 . (𝑃 : out 𝑎𝑖)

Concurrent Quantum Separation Logic for Fine-Grained Parallelism 9

General proof rules.

𝑃 ⊢ 𝑃 𝑃 ⊢ 𝑄 𝑄 ⊢ 𝑅
𝑃 ⊢ 𝑅

𝑝 holds

𝑃 ⊢ 𝑝
𝑃 ⊢ 𝑝 𝑝 implies 𝑃 ⊢ 𝑄

𝑃 ⊢ 𝑄

𝑃1 ∧ 𝑃2 ⊢ 𝑃𝑖
𝑅 ⊢ 𝑃 𝑅 ⊢ 𝑄
𝑅 ⊢ 𝑃 ∧𝑄 𝑃𝑖 ⊢ 𝑃1 ∨ 𝑃2

𝑃 ⊢ 𝑅 𝑄 ⊢ 𝑅
𝑃 ∨𝑄 ⊢ 𝑅

(𝑃→𝑄) ∧ 𝑃 ⊢ 𝑄 𝑃 ∧𝑄 ⊢ 𝑅
𝑃 ⊢ 𝑄→ 𝑅

(∀𝑥 . 𝑃𝑥) ⊢ 𝑃𝑎
∀𝑥 . (𝑄 ⊢ 𝑃𝑥)
𝑄 ⊢ ∀𝑥 . 𝑃𝑥

𝑃𝑎 ⊢ (∃𝑥 . 𝑃𝑥)
∀𝑥 . (𝑃𝑥 ⊢ 𝑄)
(∃𝑥 . 𝑃𝑥) ⊢ 𝑄

𝑃 ⊢ 𝑄
𝑃 ∗ 𝑅 ⊢ 𝑄 ∗ 𝑅 𝑃 ∗ emp ⊣⊢ 𝑃 𝑃 ∗𝑄 ⊣⊢ 𝑄 ∗ 𝑃 (𝑃 ∗𝑄) ∗ 𝑅 ⊣⊢ 𝑃 ∗ (𝑄 ∗ 𝑅)

(𝑃 −∗𝑄) ∗ 𝑃 ⊢ 𝑄 𝑃 ∗𝑄 ⊢ 𝑅
𝑃 ⊢ 𝑄 −∗ 𝑅

Basic Hoare-triple proof rules.

𝑃 ′ ⊢ 𝑃
{
𝑃
}
𝑒
{
𝑣 . 𝑄𝑣

}
∀𝑣 . (𝑄𝑣 ⊢ 𝑄 ′𝑣){

𝑃 ′
}
𝑒
{
𝑣 . 𝑄 ′𝑣

} {
𝑃
}
𝑒
{
𝑣 . 𝑄𝑣

}{
𝑃 ∗ 𝑅

}
𝑒
{
𝑣 . 𝑄𝑣 ∗ 𝑅

}
{
⊥
}
𝑒
{
𝑣 . 𝑄𝑣

} ∀𝑥 .
{
𝑃𝑥

}
𝑒
{
𝑣 . 𝑄𝑣

}{
∃𝑥 . 𝑃𝑥

}
𝑒
{
𝑣 . 𝑄𝑣

}{
𝑃
}
𝑒
{
𝑣 . 𝑄𝑣

}
∀𝑣 .

{
𝑄𝑣

}
𝐾 [𝑣]

{
𝑣 ′. 𝑅𝑣′

}{
𝑃
}
𝐾 [𝑒]

{
𝑣 ′. 𝑅𝑣′

} {
𝑃
}
𝑒 [𝑣/𝑥]

{
𝑣 ′. 𝑄𝑣′

}{
𝑃
}
let 𝑥 = 𝑣 in 𝑒

{
𝑣 ′. 𝑄𝑣′

}{
𝑃
}
𝑒𝑏

{
𝑣 . 𝑄𝑣

}{
𝑃
}
if 𝑏 {𝑒1 } else {𝑒0 }

{
𝑣 . 𝑄𝑣

} {
𝑃
}
𝑒1

{
𝑏. 𝑄𝑏

} {
𝑄1

}
𝑒2

{
𝑃
}{

𝑃
}
while 𝑒1 {𝑒2 }

{
𝑣 . 𝑄0

}
Basic proof rules for concurrency.{

𝑃
}
𝑒
{
𝑣 . 𝑄𝑣

} {
𝑃 ′

}
𝑒′

{
𝑣 ′. 𝑄 ′

𝑣′
}{

𝑃 ∗ 𝑃 ′
}
𝑒 ∥ 𝑒′

{
(𝑣, 𝑣 ′) . 𝑄𝑣 ∗ 𝑄 ′𝑣′

}
parallel

{
𝑃
}
𝑒
{
𝑣 . 𝑄𝑣

}{
𝑃
}
atomic {𝑒 }

{
𝑣 . 𝑄𝑣

}
atomic

Rules for exactness.

emp : precise
𝑃,𝑄 : precise
𝑃 ∗𝑄 : precise

𝑃 : precise 𝑄 ⊢ 𝑃
𝑄 : precise

𝑞
𝑟↦→ |𝜓 ⟩ : precise [𝑞]𝑟 : precise ℓ

𝑟↦→ 𝑣 : precise

Rules for quantum and heap ownership exclusion.

emp : out 𝑎
𝑃,𝑄 : out 𝑎

𝑃 ∨𝑄, 𝑃 ∗𝑄 : out 𝑎
∀𝑥 . (𝑃𝑥 : out 𝑎)
(∃𝑥 . 𝑃𝑥) : out 𝑎

𝑃 : out 𝑎 𝑄 ⊢ 𝑃
𝑄 : out 𝑎

10 Yusuke Matsushita, Kengo Hirata, and Ryo Wakizaka

𝑞
𝑟↦→ |𝜓 ⟩ , [𝑞]𝑟 : out ℓ

𝑞 ∉ {𝑞′}
𝑞′

𝑟↦→ |𝜓 ⟩ : out 𝑞

𝑞 ≠ 𝑞′

[𝑞′]𝑟 : out 𝑞

ℓ
𝑟↦→ 𝑣 : out 𝑞

ℓ ≠ ℓ ′

ℓ ′
𝑟↦→ 𝑣 : out ℓ

Basic proof rules for quantum ownership.

(𝑞, 𝑞′) ↦→ |𝜓 ⟩ |𝜓 ′⟩ ⊣⊢ 𝑞 ↦→ |𝜓 ⟩ ∗ 𝑞′ ↦→ |𝜓 ′⟩ qptto-tensor

𝑞
𝑟+𝑟 ′↦→ |𝜓 ⟩ ⊣⊢ 𝑞 𝑟↦→ |𝜓 ⟩ ∗ 𝑞 𝑟 ′↦→ |𝜓 ⟩

𝑞
𝑟↦→ |𝜓 ⟩ ⊢ (𝑞 are pairwise distinct) ∧ 𝑟 ≤ 1

{𝑞} ∩ {𝑞′} ≠ ∅

𝑞
𝑟↦→ |𝜓 ⟩ ∗ 𝑞′ 𝑟 ′↦→ |𝜓 ′⟩ ⊢ 𝑞 = 𝑞′ ∧ |𝜓 ⟩ = |𝜓 ′⟩

qptto-agree

(𝑞𝜎 (1) , 𝑞𝜎 (2) , . . . , 𝑞𝜎 (𝑛))
𝑟↦→ ⌜𝜎⌝ |𝜓 ⟩ ⊣⊢ (𝑞1, 𝑞2, . . . , 𝑞𝑛)

𝑟↦→ |𝜓 ⟩ qptto-permute

[𝑞]𝑟+𝑟 ′ ⊣⊢ [𝑞]𝑟 ∗ [𝑞]𝑟 ′ [𝑞]𝑟 ⊢ 𝑟 ≤ 1{
emp

}
qalloc

{
𝑞. 𝑞 ↦→ |0⟩ ∗ [𝑞]1

} {
𝑞 ↦→ |0⟩ ∗ [𝑞]1

}
qfree 𝑞

{
emp

}{
(𝑞, 𝑞′) ↦→ |𝜓 ⟩

}
𝑈 [𝑞]

{
(𝑞, 𝑞′) ↦→ (𝑈𝑞 ⊗ I𝑞′) |𝜓 ⟩

}
The rule qptto-tensor cannot be applied to fractional points-to tokens, because that

would violate the agreement rule qptto-agree, due to tensor decomposition |𝜑⟩ = |𝜓 ⟩ |𝜓 ′⟩
of a vector |𝜑⟩ not being unique. In the rule qptto-permute, 𝜎 is a permutation (bijective

map) over {1, 2, . . . , 𝑛} and ⌜𝜎⌝ denotes the permutation matrix over

(
C2

)⊗𝑛
mapping

|𝑏1𝑏2 · · ·𝑏𝑛⟩ to
��𝑏𝜎 (1)𝑏𝜎 (2) · · ·𝑏𝜎 (𝑛) 〉 (where 𝑏𝑖 ∈ {0, 1}).

Proof rules for heap ownership.

ℓ
𝑟+𝑟 ′↦→ 𝑣 ⊣⊢ ℓ 𝑟↦→ 𝑣 ∗ ℓ 𝑟 ′↦→ 𝑣 ℓ

𝑟↦→ 𝑣 ⊢ 𝑟 ≤ 1{
emp

}
mkref 𝑣

{
ℓ . ℓ ↦→ 𝑣

}{
ℓ

𝑟↦→ 𝑣
}

!ℓ
{
𝑣 ′. 𝑣 = 𝑣 ′ ∧ ℓ 𝑟↦→ 𝑣

} {
ℓ ↦→ 𝑣

}
ℓ ← 𝑣 ′

{
ℓ ↦→ 𝑣 ′

}
Proof rules for quantum superposition.{
𝑞 ↦→ |𝜓 ⟩ ∗ 𝑃

}
𝑒
{
𝑞 ↦→ |𝜑⟩ ∗ 𝑄

} {
𝑞 ↦→ |𝜓 ′⟩ ∗ 𝑃

}
𝑒
{
𝑞 ↦→ |𝜑 ′⟩ ∗ 𝑄

}
𝑃,𝑄 : precise{

𝑞 ↦→ (𝛼 |𝜓 ⟩ + 𝛽 |𝜓 ′⟩) ∗ 𝑃
}
𝑒
{
𝑞 ↦→ (𝛼 |𝜑⟩ + 𝛽 |𝜑 ′⟩) ∗ 𝑄

}
𝑃,𝑄 : precise

qptto-lincomb

𝑃 : out 𝑞 𝑃,𝑄 : precise{
𝑞

𝑟↦→ |𝜓 ⟩ ∗ 𝑃
}
𝑒
{
𝑞

𝑟↦→ |𝜓 ⟩ ∗ 𝑄
} {

𝑞
𝑟↦→ |𝜓 ′⟩ ∗ 𝑃

}
𝑒
{
𝑞

𝑟↦→ |𝜓 ′⟩ ∗ 𝑄
}{

𝑞
𝑟↦→ (𝛼 |𝜓 ⟩ + 𝛽 |𝜓 ′⟩) ∗ 𝑃

}
𝑒
{
𝑞

𝑟↦→ (𝛼 |𝜓 ⟩ + 𝛽 |𝜓 ′⟩) ∗ 𝑄
}

frqptto-lincomb

Concurrent Quantum Separation Logic for Fine-Grained Parallelism 11

Proof rules for modifying fractional quantum points-to tokens.{
𝑞

𝑟↦→ |𝜓 ⟩ ∗ 𝑃
}
𝑒
{
𝑣 . 𝑞

𝑟↦→ |𝜓 ⟩ ∗ 𝑄𝑣

}
𝑃 : out 𝑞 𝑟 < 1{

𝑞
𝑟 ′↦→ |𝜓 ⟩ ∗ 𝑃

}
𝑒
{
𝑣 . 𝑞

𝑟 ′↦→ |𝜓 ⟩ ∗ 𝑄𝑣

}{
𝑞

𝑟↦→ |𝜓 ⟩ ∗ 𝑞′ 𝑟↦→ |𝜓 ′⟩ ∗ 𝑃
}
𝑒
{
𝑣 . 𝑞

𝑟↦→ |𝜓 ⟩ ∗ 𝑞′ 𝑟↦→ |𝜓 ′⟩ ∗ 𝑄𝑣

}
𝑃 : out 𝑞, 𝑞′{

(𝑞, 𝑞′) 𝑟↦→ |𝜓 ⟩ |𝜓 ′⟩ ∗ 𝑃
}
𝑒
{
𝑣 . (𝑞, 𝑞′) 𝑟↦→ |𝜓 ⟩ |𝜓 ′⟩ ∗ 𝑄𝑣

}{
(𝑞, 𝑞′) 𝑟↦→ |𝜓 ⟩ |𝜓 ′⟩ ∗ 𝑃

}
𝑒
{
𝑣 . (𝑞, 𝑞′) 𝑟↦→ |𝜓 ⟩ |𝜓 ′⟩ ∗ 𝑄𝑣

}
𝑃 : out 𝑞, 𝑞′{

𝑞
𝑟↦→ |𝜓 ⟩ ∗ 𝑞′ 𝑟↦→ |𝜓 ′⟩ ∗ 𝑃

}
𝑒
{
𝑣 . 𝑞

𝑟↦→ |𝜓 ⟩ ∗ 𝑞′ 𝑟↦→ |𝜓 ′⟩ ∗ 𝑄𝑣

}
Proof rules for promotion by atomicity.

𝑒 is atomic 𝑃 : out 𝑞
{
𝑞 ↦→ |𝜓 ⟩ ∗ [𝑞]1 ∗ 𝑃

}
𝑒
{
𝑣 . 𝑞 ↦→ |𝜓 ⟩ ∗ [𝑞]1 ∗ 𝑄𝑣

}{
𝑞

𝑟↦→ |𝜓 ⟩ ∗ 𝑃
}
𝑒
{
𝑣 . 𝑞

𝑟↦→ |𝜓 ⟩ ∗ 𝑄𝑣

}
qptto-promote

𝑒 is atomic 𝑃 : out 𝑞 ∀ |𝜓 ⟩ .
{
𝑞 ↦→ |𝜓 ⟩ ∗ [𝑞]1 ∗ 𝑃

}
𝑒
{
𝑣 . 𝑞 ↦→ |𝜓 ⟩ ∗ [𝑞]1 ∗ 𝑄𝑣

}{
[𝑞]𝑟 ∗ 𝑃

}
𝑒
{
𝑣 . [𝑞]𝑟 ∗ 𝑄𝑣

}
qtok-promote

𝑒 is atomic 𝑃 : out ℓ
{
ℓ ↦→ 𝑣 ∗ 𝑃

}
𝑒
{
𝑣 ′. ℓ ↦→ 𝑣 ∗ 𝑄𝑣′

}{
ℓ

𝑟↦→ 𝑣 ∗ 𝑃
}
𝑒
{
𝑣 ′. ℓ

𝑟↦→ 𝑣 ∗ 𝑄𝑣′
} hptto-promote

C Semantic Model of Our Separation Logic
Here we present the semantic model of our separation logic presented in § 4.

Heap PCM. The heap PCM (partial commutative monoid) Heap is defined in a standard

way:

|Heap| ≜ Loc
fin
⇀ (0, 1] × Val 𝜀Heap ≜ ∅

�̂� ·Heap �̂� ′ ≜ 𝜆 ℓ ∈ dom �̂� ∪ dom �̂� ′.

�̂� [ℓ] ℓ ∉ dom �̂� ′

�̂� ′ [ℓ] ℓ ∉ dom �̂�

�̂� [ℓ] · �̂� [ℓ ′] otherwise

where (𝑞, 𝑣) · (𝑞′, 𝑣 ′) ≜

{
(𝑞 + 𝑞′, 𝑣) 𝑞 + 𝑞′ ≤ 1, 𝑣 = 𝑣 ′

undefined otherwise

The lifting ⌜𝐻⌝ ∈ |Heap| of a heap 𝐻 ∈ Heap into a heap PCM element is defined as

follows:

⌜𝐻⌝ ≜ 𝜆 ℓ ∈ dom𝐻. (1, 𝐻 [ℓ])

Quantum memory PCM. The qubit token PCM Qtok is defined as follows:

|Qtok| ≜ Qname fin→ [0, 1] 𝜀Qtok ≜ 𝜆_. 0

12 Yusuke Matsushita, Kengo Hirata, and Ryo Wakizaka

𝑅 ·Qtok 𝑅′ ≜ 𝜆𝑞.

{
𝑅 𝑞 + 𝑅′ 𝑞 𝑅 𝑞 + 𝑅′ 𝑞 ≤ 1

undefined otherwise

Here, by

fin→, we mean a finite-support mapping. For any 𝑅 ∈ |Qtok|, the support supp𝑅 ≜
{𝑞 ∈ Qname | 𝑅 𝑞 ≠ 0} is a finite set.
The quantum points-to token PCM Qptto is defined as follows:

|Qptto| ≜
∐

qs ∈ PowfinQname

(
C2

)⊗qs × ∐
qss ∈QnamePart qs

(0, 1)qss ×
∏

qs′ ∈qss

(
C2

)⊗qs′
where QnamePart qs ≜

{
{qs′} ∈ PowfinPowfinQname

�� qs, qs′ are pairwise disjoint }
𝜀Qptto ≜ (∅, 1,∅,∅,∅)

(qs, |𝜓 ⟩ , qss, 𝑅, 𝐹) ·Qptto (qs′, |𝜓 ′⟩ , qss′, 𝑅′, 𝐹 ′) ≜
normalQptto

(
qs ∪ qs′, |𝜓 ⟩ ⊗ |𝜓 ′⟩ ,

qss ∪ qss′, (𝜆qs+. 𝑅 qs+ + 𝑅′ qs+), 𝐹 ∪ 𝐹 ′
) qs, qs′, (qss ∪ qss′)’s elements

are pairwise disjoint,

𝐹 |qss∩qss′ = 𝐹 ′ |qss∩qss′,
∀qs+. 𝑅 qs+ + 𝑅′ qs+ ≤ 1

undefined otherwise

where normalQptto
(
qs, |𝜓 ⟩ , qss, 𝑅, 𝐹

)
≜ let qss′ = {qs′ ∈ qss | 𝑅 qs′ = 1} in(

qs ∪ ⋃
qss′, |𝜓 ⟩ ⊗

⊗
qs′∈qss′ 𝐹 qs

′, qss \ qss′, 𝑅 |qss\qss′, 𝐹 |qss\qss′
)

Here we introduce the function normalQptto to normalize the state by clearing parts of the

full fraction. In the definition of ·Qptto, the application 𝑅 qs+ is defined as 0 if qs+ ∉ dom𝑅.

We write ¤𝑀 for elements of |Qptto|.
The quantum memory PCM Qmem is defined as the product of the quantum points-to

token PCM and the qubit token PCM:

Qmem ≜ Qptto × Qtok

We write �̂� for elements of |Qmem|. The lifting ⌜𝑀⌝ ∈ |Qmem| of a quantum memory

𝑀 ∈ Qmem into a quantum memory PCM element is defined as follows:

⌜𝑀⌝ ≜
(
(qs, |𝜓 ⟩ ,∅,∅,∅), 𝜆𝑞. if 𝑞 ∈ qs then 1 else 0

)
Global state PCM. The global state PCM is the product of the heap PCM and quantum

memory PCM:

Glob ≜ Qmem × Heap

We write 𝐺 for elements of |Glob|. The lifting ⌜𝐺⌝ ∈ |Glob| of a global state 𝐺 ∈ Glob
into a global state PCM element is defined as follows:

⌜(𝑀,𝐻)⌝ ≜
(
⌜𝑀⌝, ⌜𝐻⌝

)
Propositions. We interpret a proposition 𝑃 ∈ SLProp as a predicate over the global PCM

J𝑃K : |Glob| → Prop as follows:

J𝑝K _ ≜ 𝑝 J𝑃 ∧𝑄K𝐺 ≜ J𝑃K𝐺 ∧ J𝑄K𝐺

Concurrent Quantum Separation Logic for Fine-Grained Parallelism 13

J𝑃 ∨𝑄K𝐺 ≜ J𝑃K𝐺 ∨ J𝑄K𝐺 J𝑃→𝑄K𝐺 ≜ J𝑃K𝐺→ J𝑄K𝐺

J∀𝑥 . 𝑃𝑥K𝐺 ≜ ∀𝑥 . J𝑃𝑥K𝐺 J∃𝑥 . 𝑃𝑥K𝐺 ≜ ∃𝑥 . J𝑃𝑥K𝐺

JempK𝐺 ≜ 𝐺 = 𝜀 J𝑃 ∗𝑄K𝐺 ≜ ∃𝐺1,𝐺2. 𝐺 = 𝐺1 ·𝐺2 ∧ J𝑃K𝐺1 ∧ J𝑄K𝐺2

J𝑃 −∗𝑄K𝐺 ≜ ∀𝐺 ′ s.t. 𝐺 ·𝐺 ′ ↓ . J𝑃K𝐺 ′→ J𝑄K (𝐺 ·𝐺 ′)

J𝑞
𝑟↦→ |𝜓 ⟩K ((¤𝑀,𝑅), �̂�) ≜ 𝑅 = 𝜀 ∧ �̂� = 𝜀 ∧
(𝑞 are pairwise distinct) ∧ 𝑟 ≤ 1 ∧ ¤𝑀 = qptto𝑟

(
{𝑞}, ⌜𝑞⌝ |𝜓 ⟩

)
where qptto𝑟 (qs, |𝜓 ⟩) ≜

{
(qs, |𝜓 ⟩ ,∅,∅,∅) 𝑟 = 1(
∅, 1, {qs}, (𝜆_. 𝑟), (𝜆_. |𝜓 ⟩)

)
𝑟 < 1

J[𝑞]𝑟 K ((¤𝑀,𝑅), �̂�) ≜ ¤𝑀 = 𝜀 ∧ �̂� = 𝜀 ∧ 𝑅 𝑞 = 𝑟 ∧ ∀𝑞′ ≠ 𝑞. 𝑅 𝑞′ = 0

Jℓ
𝑟↦→ 𝑣K (�̂�, �̂�) ≜ �̂� = 𝜀 ∧ �̂� = {(ℓ, (𝑟, 𝑣))}

In the semantics of 𝑞
𝑟↦→ |𝜓 ⟩, we write ⌜𝑞⌝ for the linear map that maps |𝑏1𝑏2 · · ·𝑏𝑛⟩ to

|{𝑞𝑖 ↦→ 𝑏𝑖 | 𝑖}⟩, under the condition that 𝑞 = 𝑞1, 𝑞2, . . . , 𝑞𝑛 are pairwise distinct.

Basic judgments. The entailment judgment is interpreted as follows, as usual:

J𝑃 ⊢ 𝑄K ≜ ∀𝐺. J𝑃K𝐺→ J𝑄K𝐺

The exactness judgment is interpreted as follows:

J𝑃 : preciseK ≜ ∀𝐺 s.t. J𝑃K𝐺. ∀𝐺 ′ s.t. J𝑃K𝐺 ′. 𝐺 = 𝐺 ′

The ownership exclusion judgment is interpreted as follows:

J𝑃 : out 𝑞K ≜ ∀�̂�, �̂� . J𝑃K (�̂�, �̂�)→ 𝑞 ∉ dom �̂�

J𝑃 : out ℓK ≜ ∀�̂�, �̂� . J𝑃K (�̂�, �̂�)→ ℓ ∉ dom �̂�

Here, we define dom �̂� ⊆ Qname as follows:

dom
(
(qs, |𝜓 ⟩ , qss, 𝑅′, 𝐹), 𝑅

)
≜ qs ∪

⋃
qss ∪ supp𝑅

Hoare triple. The Hoare triple
{
𝑃
}
𝑒
{
𝑣 . 𝑄𝑣

}
is interpreted as follows:

J
{
𝑃
}
𝑒
{
𝑣 . 𝑄𝑣

}
K ≜ ∀𝐺. J𝑃K𝐺→ Hoare

(
𝑒, 𝐺, 𝜆𝑣 . J𝑄𝑣K

)
Here, the predicate Hoare : Exp × |Glob| × (Val → |Glob| → Prop) → Prop is coinduc-

tively defined as follows:

Hoare(𝑒,𝐺,𝛷) ≜𝜈

(
𝑒 ∈ Val ∧ 𝛷 𝑒 𝐺

)
∨ ∀𝐺, 𝐺+ s.t. ⌜𝐺⌝ = 𝐺 ·𝐺+.

red(𝑒,𝐺) ∧ ∀ (𝑒′,𝐺 ′) ← (𝑒,𝐺) . ∃𝐺 ′ s.t. ⌜𝐺 ′⌝ = 𝐺 ′ ·𝐺+. Hoare(𝑒′,𝐺 ′,𝛷)

	Abstract
	1 Introduction
	2 Target Quantum Language
	3 Motivating Example
	4 Our Quantum Separation Logic
	5 Verification of the Motivating Example
	6 Future Work
	References
	A Operational Semantics of the Target Quantum Language
	B Proof Rules of Our Separation Logic
	C Semantic Model of Our Separation Logic

