
Nola: Later-Free Ghost State for Verifying Termination in Iris

YUSUKE MATSUSHITA, Kyoto University, Japan

TAKESHI TSUKADA, Chiba University, Japan

Separation logic (SL) has recently evolved at an exciting pace, opening the way to more complex goals, notably

soundness proof of Rust’s ownership type system and functional verification of Rust programs. In this paper,

we address verification of termination in the presence of advanced features, especially Rust’s ownership types.

Perhaps surprisingly, this goal cannot be achieved by a simple application of existing studies that dealt only

with safety properties. For high-level reasoning about advanced shared mutable state as used in Rust, they

used higher-order ghost state (i.e., logical state that depends on SL assertions), but in a way that depends on

the later modality, a fundamental obstacle to verifying termination.

To solve this situation, we propose a novel general framework, Nola, which achieves later-free higher-order

ghost state. Even in the presence of advanced features such as invariants and borrows, Nola enables natural

termination verification, allowing arbitrary induction in the meta-logic. Its key idea is to parameterize higher-

order ghost state, generalizing and subsuming the existing approach. Nola is fully mechanized in Rocq as

a library of Iris. Moreover, to demonstrate the power of Nola, we develop a prototype of RustHalt, the first

semantic and mechanized foundation for total correctness verification of Rust programs.

CCS Concepts: • Theory of computation→ Separation logic; Logic and verification.

Additional Key Words and Phrases: Iris, later modality, step-indexing, higher-order ghost state, shared mutable

state, Rust, termination

ACM Reference Format:
Yusuke Matsushita and Takeshi Tsukada. 2025. Nola: Later-Free Ghost State for Verifying Termination in Iris.

Proc. ACM Program. Lang. 9, PLDI, Article 151 (June 2025), 27 pages. https://doi.org/10.1145/3729250

1 Introduction
Separation logic (SL) [O’Hearn and Pym 1999; O’Hearn et al. 2001; Reynolds 2002; O’Hearn 2004;

Brookes 2004] has been very actively studied as the de facto standard, highly scalable logic for

reasoning about mutable state [Brookes and O’Hearn 2016; O’Hearn 2019]. Its core idea is to equip

propositions with ownership of some mutable state (e.g., the points-to token r ↦→ v exclusively
owns the memory cell at r). Recently, separation logic has evolved at an exciting pace.

One of the milestones of this line of research is the verification of programs in Rust [Matsakis

and Klock 2014]. Its verification is of practical importance, given the growing attention Rust has

received in recent years. Furthermore, Rust’s complex memory management mechanisms also serve

as a challenging benchmark for evaluating the expressiveness of program logic. Jung et al. [2018a]

and Dang et al. [2020] proved the soundness of Rust’s ownership type system and Matsushita et al.

[2022] and Gäher et al. [2024] established functional verification of Rust programs.

The above-mentioned Rust verification projects dealt only with safety properties, such as memory

safety and partial correctness, telling about the absence of bad behavior (e.g., invalid memory

access) or what happens if the program terminates. Perhaps surprisingly, termination verification

Authors’ Contact Information: Yusuke Matsushita, Kyoto University, Kyoto, Japan, ymat@fos.kuis.kyoto-u.ac.jp; Takeshi

Tsukada, Chiba University, Chiba, Japan, tsukada@math.s.chiba-u.ac.jp.

This work is licensed under a Creative Commons Attribution 4.0 International License.

© 2025 Copyright held by the owner/author(s).

ACM 2475-1421/2025/6-ART151

https://doi.org/10.1145/3729250

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 151. Publication date: June 2025.

HTTPS://ORCID.ORG/0000-0002-5208-3106
HTTPS://ORCID.ORG/0000-0002-2824-8708
https://doi.org/10.1145/3729250
https://orcid.org/0000-0002-5208-3106
https://orcid.org/0000-0002-2824-8708
https://orcid.org/0000-0002-2824-8708
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3729250

151:2 Yusuke Matsushita and Takeshi Tsukada

of Rust programs cannot be accomplished by a simple application of the existing studies for a

well-known but rather technical reason, which we will discuss later.

In this paper, we propose a new general framework, nicknamed Nola, built on top of the Iris

separation logic framework [Jung et al. 2015, 2018b]. Nola solves existing challenges and enables

verification of termination of programs in the presence of advanced features such as shared mutable

references and Rust’s ownership types. With the power of Nola, we have developed a prototype of

RustHalt, the first semantic and mechanized foundation for total correctness verification of Rust

programs. In this section, we first discuss the existing techniques and remaining challenges (§ 1.1)

and then present an overview of our solution, Nola (§ 1.2).

1.1 Existing Techniques and Challenges
Total correctness verification in separation logic. First, we briefly explain an existing frame-

work for total correctness verification in separation logic. We write

[
𝑃
]
𝑒
[
𝜆𝑣.𝑄𝑣

]
for a total Hoare

triple, meaning that if the program 𝑒 is executed from a state satisfying 𝑃 , then it is guaranteed to

terminate, with 𝑒 ↩→∗ 𝑣 for some value 𝑣 , and the resulting state will satisfy 𝑄𝑣 . Remarkably, we

can prove total correctness using induction in the meta-logic. For example, if we are developing the

total correctness proof in Rocq (formerly known as Coq), we can freely use native induction tactics

of Rocq. Such a technique can be found in, e.g., CFML [Charguéraud 2011].

Example 1.1 (Total correctness proof by meta-logic induction). For a simple example, let us consider

the following recursive function:

fn decrloop(r) { if *r > 0 { r := *r − 1; decrloop(r) } }

We have the total Hoare triple

[
r ↦→ 𝑛

]
decrloop(r)

[
𝜆_. r ↦→ 0

]
for every natural number 𝑛 ∈ N,

i.e., decrloop(r) terminates setting r to 0 whatever the initial natural number stored at r. To prove
this, we can appeal to the induction on 𝑛 in the meta-logic as follows. For the base case 𝑛 = 0, then

the program immediately terminates with the points-to token r ↦→ 0. For the step case 𝑛 = 𝑘 + 1

for 𝑘 ∈ N, we start with the state r ↦→ (𝑘 + 1). We perform the decrement r := *r − 1 and reach

the same function call decrloop(r) with the updated state r ↦→ 𝑘 , where we can use the induction

hypothesis for the case 𝑛 = 𝑘 , which completes the proof.

Notably, we can also easily prove unbounded termination, where the number of program steps

for termination is unbounded.

Example 1.2 (Proving unbounded termination). For example, we can prove the following assertion:[
r ↦→ 𝑣

]
*r = ndnat; decrloop(r)

[
𝜆_. r ↦→ 0

]
. It says that decrloop(r) terminates, with the

value at r set to 0, after initializing the value at r with a non-deterministic natural number ndnat.
This is an example of unbounded termination, because the number of program steps depends on

the output of ndnat, which is unbounded. The proof goes simply by combining the standard proof

rules (especially

[
⊤
]
ndnat

[
𝜆𝑣. 𝑣 ∈ N

]
for non-determinism) with the total Hoare assertion that

we proved in Theorem 1.1 by meta-logic induction.

Invariants and higher-order ghost state. Separation logic features the points-to token r ↦→ 𝑣 ,

which is useful for reasoning about exclusive mutable state, but it cannot be directly shared
while retaining mutability. To tackle shared mutable state, advanced separation logics use (shared)
invariants [Hobor et al. 2008; Buisse et al. 2011; Svendsen et al. 2013; Svendsen and Birkedal 2014],

whose modern usage was established by Iris [Jung et al. 2015, 2018b]. Roughly speaking, the

invariant token 𝑃 asserts that 𝑃 is an invariant, i.e., the situation described by the SL proposition

𝑃 ∈ iProp is always kept during the program execution.
1
Therefore, when 𝑃 holds, we can assume

1
In this paper, we use iProp for the set of SL propositions, following the convention of Iris (‘i’ actually stands for Iris).

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 151. Publication date: June 2025.

Nola: Later-Free Ghost State for Verifying Termination in Iris 151:3

𝑃 at any moment, but at the same time, we need to ensure that 𝑃 holds at all times. The key property

is that 𝑃 claims no ownership (even if 𝑃 claims some); it can be duplicated 𝑃 ⇔ 𝑃 ∗ 𝑃 and hence

be freely shared, especially among multiple threads.

For a simple example, one can express a shared mutable reference storing a boolean by:

r : ref bool ≜ r ↦→ true ∨ r ↦→ false (1.1)

It means that the memory cell at r always stores true or false. We can create this invariant by

allocating a reference (e.g.,

[
⊤
]
ref true

[
𝜆r. r ↦→ true ∨ r ↦→ false

]
). Under this invariant, we

can safely store any boolean to r (e.g.,

[
r ↦→ true ∨ r ↦→ false

]
*r = false

[
⊤
]
) and load a

boolean from r (e.g.,

[
r ↦→ true ∨ r ↦→ false

]
*r

[
𝜆v. v = true ∨ v = false

]
), and conversely

cannot store non-boolean values (e.g., 42) to r.
Also, nested shared mutable references can be naturally expressed, for example:

r : ref (ref bool) ≜ ∃s. r ↦→ s ∗ s ↦→ true ∨ s ↦→ false (1.2)

Notably, we can nest the invariant token, because the invariant token itself is an SL proposition.

Here, the inner reference should be wrapped into the invariant token for it to be sharable.

Another important pattern of shared mutable state is Rust-style borrows. It is a mechanism for

temporarily borrowing access permissions on some objects, causing a form of sharing between

borrowers and lenders. This more complex form of sharing was given a semantic model in separation

logic by the lifetime logic of RustBelt [Jung et al. 2018a; Jung 2020], which proved the memory

and thread safety guarantee of Rust’s ownership type system. The lifetime logic, or its borrow

machinery, has proved vital for semantically modeling Rust’s ownership types, especially mutable

&α mut T and shared &α T references, and verify key properties about Rust [Dang et al. 2020; Yanovski
et al. 2021; Matsushita et al. 2022; Gäher et al. 2024].

Invariants and borrows mentioned above are examples of a more general framework known

as higher-order ghost state [Jung et al. 2016, 2018b], logical state whose structure depends on SL

propositions. It has brought success to verification of challenging goals, such as the non-interference

of an information flow control system [Gregersen et al. 2021], the purity of Haskell’s ST monad

[Timany et al. 2018; Jacobs et al. 2022], and key properties about Rust [Jung et al. 2018a; Dang et al.

2020; Matsushita et al. 2022; Gäher et al. 2024].

The naive access rule and its unsoundness. The intuition about accessing invariants described

above can be formalized using the following plausible rule:[
𝑃 ∗ 𝑄

]
ae

[
𝜆v. 𝑃 ∗ 𝛹 v

][
𝑃 ∗ 𝑄

]
ae

[
𝛹
] thoare-inv-naive ?

This rule means that, if the invariant 𝑃 is in the precondition, we can assume 𝑃 in the precondition

but we should ensure that 𝑃 holds after the execution of 𝑒 .

Unfortunately, this rule is unsound, if any arbitrary logical formula can be used as 𝑃 . This fact

can be demonstrated using the well-known technique of creating loops with functional references,

known as Landin’s knot:

Paradox 1.3 (Naive Invariant Paradox on Landin’s Knot). Let landin be the following program:

let r = ref fn () {} in *r = fn () { (*r)() }; (*r)()

Also, let reffr ≜ ∃f. r ↦→ f ∗
[
⊤
]
f()

[
⊤
]
, which means that r points to a terminating function.

Suppose that we can use the naive later-free access rule thoare-inv-naive for an invariant token
reffr . Then we can wrongly prove the termination of Landin’s knot:

[
⊤
]
landin

[
⊤
]
.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 151. Publication date: June 2025.

151:4 Yusuke Matsushita and Takeshi Tsukada

[
𝑃 ∗ 𝑄

]
ae

[
𝜆v. 𝑃 ∗ 𝛹 v

][
𝑃 ∗ 𝑄

]
ae

[
𝛹
]

thoare-inv-naive ?

[
⊲ 𝑃 ∗ 𝑄

]
ae

[
𝜆v. ⊲ 𝑃 ∗ 𝛹 v

][
⊲ 𝑃 ∗ 𝑄

]
ae

[
𝛹
]

thoare-linv

Fig. 1. Invariant access rules: Naive (unsound) vs. Later-weakened (existing).

Proof. By allocating the invariant reffr after the initialization let r = ref fn () {}. The naive

rule thoare-inv-naive (paradoxically) allows proving the termination

[
reffr

]
(*r)()

[
⊤
]
,

hence justifying the update *r = fn () { (*r) }. □

Later modality. The existing approach to justify higher-order ghost state resorted to the later
modality ⊲: iProp→ iProp for soundness [Nakano 2000; Appel and McAllester 2001]. For example,

instead of thoare-inv-naive, the existing approach used the rule thoare-linv in Fig. 1, with the

shared content 𝑃 weakened by the later modality ⊲. To clarify this fact, we also write the invariant

token as ⊲ 𝑃 (with a gray later modality ⊲ on 𝑃) instead of 𝑃 . For example, the nested reference

(1.2) is actually modeled as follows, if we explicitly write the later modality:

r : ref (ref bool) ≜ ⊲ ∃s. r ↦→ s ∗ ⊲ (s ↦→ true ∨ s ↦→ false) (1.3)

We have the later-weakened proof rule thoare-linv in Fig. 1. It provides access to the later-

weakened shared content ⊲ 𝑃 on executing an atomic expression ae (an expression that takes only

one program step).

The later modality in thoare-inv is necessary for soundness, but it is an obstacle to reasoning.

Especially, for nested references like (1.3), the existing approach suffers from the later modality that

is stuck to inner references and blocks further access. For example:[
⊲ ∃s. r ↦→ s ∗ ⊲𝛷 s

]
*r

[
𝜆s. ⊲ ⊲𝛷 s

]
.

The postcondition only ensures that the inner reference s satisfies ⊲ ⊲𝛷 s , not ⊲𝛷 s , and the

later modality ⊲ here blocks access to the content of the inner invariant.

Step-indexing and its limitations. To strip off the later modality, the existing studies used

a technique called step-indexing [Nakano 2000; Appel and McAllester 2001]. Step-indexing ties

program steps to the later modality in some way, allowing the later modality to be stripped off as

the program executes.

However, step-indexing is actually a fundamental obstacle for the purpose of proving termination,
or more generally liveness properties (e.g., termination preservation).

2
This problem has been well

known. For example, the paper [Gäher et al. 2022] on the Simuliris separation logic, says as follows

(§1.1, references relabeled):

However, Iris’s use of step-indexing [Appel and McAllester 2001] means that Iris-based

approaches like ReLoC [Frumin et al. 2018] do not support reasoning about liveness

properties such as termination preservation.

Spies et al. [2021a] explains this fundamental limitation in relation to the lack of the existential
property in Iris: ⊢ ∃𝑛 ∈ N. 𝑃𝑛 (existential quantification in Iris) does not imply ⊢ 𝑃𝑛 for some 𝑛 ∈ N
(meta-level existential quantification).

2
In the scope of this paper, Nola supports only a simple type of (non-fair) termination, although we speculate about richer

applications of Nola. Please see Current status and future applications in § 1.2 for detailed discussions.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 151. Publication date: June 2025.

Nola: Later-Free Ghost State for Verifying Termination in Iris 151:5

[
JPK ∗ 𝑄

]
ae

[
𝜆v. JPK ∗ 𝛹 v

] Winv J K[
P ∗ 𝑄

]
ae

[
𝛹
] Winv J K

thoare-inv

P ∈ Fml

J K: Fml → iProp

Fig. 2. Invariant access rule: Nola (ours, key points highlighted).

Due to this technical challenge, existing approaches to termination can be categorized into the

following three types:

(1) Use fragments where the later modality is unnecessary. In Gäher et al. [2022], verification is

conducted without using invariant connective 𝑃 and any other higher-order ghost states.

This also applies to other recent separation logics targeting liveness properties [Song et al.

2023; Lee et al. 2023].

(2) Give a finite bound of the number of execution steps. Mével et al. [2019] developed in Iris

the machinery of time credits [Atkey 2010; Charguéraud and Pottier 2015, 2019], allowing

reasoning about bounded termination. To prove termination in this logic, the verifier must

explicitly specify the finite number of execution steps.

(3) Use transfinite step-indexing [Spies et al. 2021b] instead of finite step-indexing (by natural

numbers) used by Iris. This approach gave rise to a variant of Iris, Transfinite Iris [Spies et al.

2021a]. In particular, Transfinite Iris allows extending the idea of time credits to use transfinite
bounds (by ordinal numbers) for proving termination.

Unfortunately, none of these approaches are sufficient for verifying the termination of programs in

the presence of complex memory management mechanisms, such as Rust’s ownership types. Rust’s

memory invariants are complex, and there is no known way to reason about them without using

higher-order ghost state, making the approach (1) infeasible. Also, the approach (2) cannot be applied

to programs where the number of steps for termination cannot be bounded: for example, the number

of steps for the program *r = *s; decrloop(r) (using decrloop from Theorem 1.1) to terminate

cannot be bounded when s is a shared mutable reference (e.g., s : ref int ≜ ⊲∃𝑛 ∈ Z. s ↦→ 𝑛) to

which other processes can freely write unboundedly large integers. Moreover, explicitly providing a

finite bound on termination is not always easy. The approach (3) may seem more promising, but in

reality, it involves subtle technical challenges. Under transfinite indexing, the later modality loses

the vital commutativity laws with the existential quantifier (⊲ (∃𝑎. 𝑃𝑎) ⇔ ∃𝑎. ⊲ 𝑃𝑎) and with the

separating conjunction (⊲ (𝑃 ∗𝑄) ⇔ ⊲ 𝑃 ∗ ⊲𝑄). Many Iris developments, notably including RustBelt’s

lifetime logic [Jung et al. 2018a], rely on these commutativity laws, and thus unfortunately stop

working if ported to Transfinite Iris. Therefore, Transfinite Iris cannot be applied to termination

verification of Rust programs under RustBelt’s approach. Also, termination verification by transfinite

time credits typically requires careful management of transfinite bounds inside the separation logic,
which is not as natural and smooth as verification by arbitrary induction in the meta-logic.

In summary, there is a challenge in reconciling termination verification (allowing meta-logic

induction) and higher-order ghost state (such as invariants and borrows).

1.2 Our Solution, Nola
As a novel approach to solve this challenge, we propose Nola.3 Intuitively, in Nola, we can customize

the later modality ⊲: iProp→ iProp originally used for higher-order ghost state into a user-defined

function (namely the semantics J K: Fml → iProp) with a user-defined substitute of SL (separation

logic) propositions iProp (namely SL formulas Fml). A well-behaved variant of the later modality

3
Its name comes from ‘No later’ and the nickname of New Orleans, Louisiana, in memory of POPL 2020 held in that city.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 151. Publication date: June 2025.

151:6 Yusuke Matsushita and Takeshi Tsukada

leaves a larger class of SL propositions (including the invariant P) unweakened, and thus enables

termination verification. Now we overview Nola in more detail.

Core idea: Parameterization. Nola’s core idea is simple. It introduces two new user-defined

parameters to higher-order ghost state. The first is the set of SL formulas, or the data type that
encodes SL propositions, named Fml. The second is the semantics J K: Fml → iProp, i.e., how to

decode Fml. Intuitively, they are user-defined replacements for iProp and the latter modality ⊲,

respectively. By this, Nola attains the later-free invariant access rule thoare-inv shown in Fig. 2,

which is obtained by replacing 𝑃 ∈ iProp and ⊲ in thoare-linv (Fig. 1) with P ∈ Fml and J K.
This parameterization brings rich expressivity. For example, we can set Fml to a predicative

(or syntactic) data type. In particular, we can add to Fml the constructor
�� ��P interpreted as the

later-free invariant token J
�� ��P K ≜ P . This achieves termination verification in the presence of

nested references. For example, to the nested reference (1.3), Nola can give the following later-free
model that works in total correctness verification (here we use Fml of Fig. 6, § 2.2):

r : ref (ref bool) ≜
�
�

�
�E

s. r|-> s ∗
�� ��s|-> true v s|-> false (1.4)

We can even set Fml to a hybrid of predicative and impredicative (or semantic) constructions, where

we can express any SL propositions under the later modality ⊲ 𝑃 , subsuming the existing approach.

Key aspect: Soundness. If there were no restriction on Fml and J K at all, the logic would be

unsound, as one could set Fml ≜ ? iProp and J𝑃K ≜ ? 𝑃 to have naive later-free higher-order ghost

state of thoare-inv-naive. Fortunately, Nola is designed to be sound just by simple restrictions on

Fml and J K. We discuss this in more details in § 2.

Our contributions. Our contributions are in summary as follows:

• We propose Nola, a novel approach to higher-order ghost state that clears the later modality

via parameterization. We present Nola’s later-free versions of Iris’s invariants [Jung et al.

2015] and RustBelt’s borrows [Jung et al. 2018a].
• We closely analyze the expressivity of Nola’s approach, especially in light of Theorem 1.3.

• We propose a general technique to semantically alter SL formulas of higher-order ghost state,

which builds on a general mathematical theory.

• We have fully mechanized Nola in Rocq [Matsushita and Tsukada 2025]. Notably, it is a library

of Iris compatible with existing developments, not a variant of Iris.

• Moreover, we have developed a prototype of RustHalt, the first semantic and mechanized

foundation for total correctness verification of Rust programs.

Limitations. Naturally, the later-free ghost state of Nola has some limitations. Clearly, storing

arbitrary SL propositions 𝑃 ∈ iProp in invariants leads to the unsoundness Theorem 1.3 of the

naive rule thoare-inv-naive. Therefore, even in Nola, not all iProp can be handled in a later-free

manner. Typical constructs that Nola cannot handle in a later-free manner include total Hoare

triples, view shifts, and impredicative quantifiers; please see § 4 for more details. Handling all iProp
requires impredicativity, which is why existing approaches resorted to the later modality ⊲.

Still, notably, arbitrarily SL propositions (which can include impredicative quantifiers etc.) can

be used for reasoning in separation logic just as usual, outside of higher-order ghost state. Also, as

mentioned above, any SL propositions 𝑃 ∈ iProp can be stored in ghost state like invariants under

the guard of the later modality (i.e., in forms like

�� ��⊲ 𝑃), subsuming existing approaches.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 151. Publication date: June 2025.

Nola: Later-Free Ghost State for Verifying Termination in Iris 151:7

⊲ 𝑃 is persistent linv-persist P is persistent inv-persist

⊲ 𝑃 ⇛ ⊲ 𝑃 linv-alloc JPK ⇛Winv J K P inv-alloc

⊲ 𝑃 ∗ 𝑄 ⇛ ⊲ 𝑃 ∗ 𝑅

⊲ 𝑃 ∗ 𝑄 ⇛ 𝑅
linv-acc

JPK ∗ 𝑄 ⇛Winv J K JPK ∗ 𝑅

P ∗ 𝑄 ⇛Winv J K 𝑅
inv-acc

[
⊲ 𝑃 ∗ 𝑄

]
ae

[
𝜆v. ⊲ 𝑃 ∗ 𝛹 v

][
⊲ 𝑃 ∗ 𝑄

]
ae

[
𝛹
]

thoare-linv

[
JPK ∗ 𝑄

]
ae

[
𝜆v. JPK ∗ 𝛹 v

] Winv J K[
P ∗ 𝑄

]
ae

[
𝛹
] Winv J K

thoare-inv

⊤ ⇛ ∃𝛾Inv. ∀J K. Winv J K winv-create

Fig. 3. Selected invariant proof rules: Later-weakened vs. Nola (key points highlighted).

Current status and future applications. Currently, in the scope of this paper, Nola supports

only a simple type of termination. For concurrent programs, the current program logic does not
assume fair thread scheduling for termination. Thus, the termination proof currently requires that

each thread eventually terminates on its own (independent of actions of other threads), since the

scheduler is allowed to run only that thread and no other threads.

Nevertheless, we speculate that Nola can be used for richer liveness properties. One exciting
future direction is to extend existing separation logics for advanced liveness properties, such as

Simuliris [Gäher et al. 2022], Conditional Contextual Refinement [Song et al. 2023], and Fairness

Logic [Lee et al. 2023], with Nola’s higher-order ghost state to reason about advanced features,

especially Rust’s ownership types. In particular, we hope this can possibly reveal the currently

unknown formal relationship of Rust’s ownership type system to Simuliris, which verifies advanced

concurrent program optimizations for Rust under the model of Stacked Borrows [Jung et al. 2020a].

Another interesting future direction is to extend existing SL-based automated verification platforms

such as VeriFast [Jacobs et al. 2011] and Viper [Müller et al. 2016] with Nola’s later-free higher-order

ghost state, not giving up termination and liveness verification.

Paper organization. Section 2 presents an overview of Nola’s later-free invariants and Section

3 presents its model. Section 4 analyzes Nola’s expressivity. Section 5 presents Nola’s later-free

borrows. Section 6 presents a technique to semantically alter SL formulas of higher-order ghost

state. Section 7 discusses RustHalt, a semantic foundation for total correctness verification of Rust

programs. Section 8 reports on our Rocq mechanization. Section 9 discusses related work.

2 Nola’s Later-Free Invariants
Now we present the interface of Nola’s later-free invariants as a central example of higher-order

ghost state (§ 2.1), present a useful construction of the SL formulas and their semantics (§ 2.2), and

show examples of using it for termination verification (§ 2.3). Here we assume basic knowledge of

Iris. Please refer to [Jung et al. 2018b] etc. for introductory materials.

2.1 Interface of Nola’s Invariants
Proof rules. Figure 3 shows selected proof rules of Nola’s later-free invariants in parallel to the

existing approach’s later-weakened invariant.
4
As previewed in § 1.2, Nola’s invariant machinery

4
For simplicity, we omit the namespace N and mask E parameters in the presentation, following the convention.

Technically, these parameters are used to prohibit access races on the contents of invariants.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 151. Publication date: June 2025.

151:8 Yusuke Matsushita and Takeshi Tsukada

𝑃 ⇛𝑊 𝑃 ′
[
𝑃 ′

]
e
[
𝛹
]𝑊[

𝑃
]
e
[
𝛹
]𝑊

vs-thoare

[
𝑃
]
e
[
𝛹′

]𝑊 ∀v. 𝛹′ v ⇛𝑊 𝛹 v[
𝑃
]
e
[
𝛹
]𝑊

thoare-vs

𝑃 ⇛𝑊 𝑄

𝑃 ⇛𝑊 ∗𝑊 ′
𝑄

vs-expand

[
𝑃
]
e
[
𝛹
]𝑊[

𝑃
]
e
[
𝛹
]𝑊 ∗𝑊 ′ thoare-expand

Fig. 4. Selected proof rules for view shifts and Hoare triples.

is parameterized over the set of SL formulas Fml ∋ P , Q and the semantics J K: Fml → iProp, which
were hard-coded in the existing approach.

Nola’s invariant token P ∈ iProp asserts that the situation described by the SL formula P ∈ Fml
holds as an invariant. The invariant token P is persistent (inv-persist), which intuitively means

that it claims no ownership and always holds regardless of state mutation. A persistent proposition

𝑃 can be duplicated (𝑃 ⇔ 𝑃 ∗ 𝑃) and hence be freely shared, especially among multiple threads.

Nola’s invariants are accessed with the view shift 𝑃 ⇛Winv J K 𝑄 , roughly meaning a logical step

from 𝑃 to 𝑄 under a global imaginary store called the world satisfaction Winv J K. Hoare triples[
𝑃
]
e
[
𝛹
] Winv J K

absorb the view shift at any point of execution (see vs-thoare, thoare-vs in

Fig. 4). One can create a new invariant P for an SL formula P ∈ Fml by storing its semantics

JPK ∈ iProp (inv-alloc). Under the invariant P , one can get access to the shared content JPK via a
view shift (linv-acc) and thus via a total Hoare triple (thoare-linv).

A key to the adequacy involving Nola’s invariants is winv-create, which creates the world

satisfaction Winv J K before any invariants are established (see Theorem 2.1 to grasp how this

works). Here, it freshly takes a ghost name 𝛾Inv, upon which the invariant token P and the world

satisfaction Winv J K implicitly depend. Technically, the semantics J K can depend on the ghost

name 𝛾Inv thanks to the rule’s universal quantification over the semantics J K: Fml → iProp.

Parameterized view shifts and Hoare triples. We also parameterize view shifts and Hoare

triples over the custom world satisfaction𝑊 ∈ iProp, which was hard-coded to a pre-installed one

Wlinv (see Fig. 8) in the existing approach. The world satisfaction serves as a global imaginary

store for shared contents of higher-order ghost state. Technically, the view shift⇛𝑊
with a custom

world satisfaction𝑊 ∈ iProp is derived from a plain view shift⇛ as follows:
5

𝑃 ⇛𝑊 𝑄 ≜ 𝑃 ∗ 𝑊 ⇛ 𝑄 ∗ 𝑊 .

Hoare triples

[
𝑃
]
e
[
𝛹
]𝑊

are modeled using view shifts⇛𝑊
. As shown in Fig. 4, Hoare triples can

absorb view shifts of the same world satisfaction (vs-thoare, thoare-vs), and world satisfactions

can be merged with the separating conjunction ∗ (vs-expand, thoare-expand).
The parameterized total Hoare triple naturally supports the standard proof rules for total cor-

rectness verification. For example, Theorems 1.1 and 1.2 work for the parameterized total Hoare

triple. In our Rocq mechanization, we prove counterparts to the proof rules of CFML [Charguéraud

2011] found in the book of Charguéraud [2025, Appendix - The Full Construction].

Moreover, we provide new adequacy theorems for parameterized Hoare triples. In particular, we

have the following adequacy theorem for the parameterized total Hoare triple:

5
For ease of implementation, we reuse the existing work’s view shift⇛ with the pre-installed world satisfactionWlinv,
instead of directly replacingWlinv with the parameter𝑊 .

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 151. Publication date: June 2025.

Nola: Later-Free Ghost State for Verifying Termination in Iris 151:9

Client

Fml ∋ P , Q F · · · →

Library

Inv Fml

P ∈ iProp →

Client

J K: Fml → iProp →

Library

Winv J K ∈ iProp
proof rules

Fig. 5. Dependencies between the components from Nola’s client and invariant library.

Theorem 2.1 (Termination Adeqacy of the Parameterized Total Hoare Triple). An expres-
sion e always terminates if the following holds: ⊤ ⇛ ∃𝑊 . 𝑊 ∗

[
⊤
]
e
[
⊤
]𝑊 .

Importantly, the theorem requires the creation of the custom world satisfaction𝑊 , which can be

chosen freely. We can discharge this requirement by creation rules for world satisfactions such

as winv-create. For example, using Theorem 2.1 and winv-create, we can prove the following:[
⊤
]
e
[
⊤
] Winv J K

implies that e always terminates.

Dependencies and restriction. For soundness, one should be careful about the following depen-

dencies between definitions by the client and Nola’s invariant library, as summarized in Fig. 5:

1. The client builds the set of SL formulas Fml.

2. Nola’s invariant library provides the camera Inv Fml for the invariant machinery. Technically,

a camera is an algebra of state resources used in Iris (a variant of partial commutative monoid,

or PCM). Roughly speaking, Iris propositions are a predicate iProp ≜ State→ Prop ˜ over the

state resources State ≜
∏

𝑖 A𝑖 defined as the product over a user-custom family of cameras

𝛴 ≜ (A𝑖)𝑖 . The library also provides the invariant token P ∈ iProp when the camera Inv Fml
is included in 𝛴 . Notably, the token P does not depend on the semantics J K.

3. The client can now build the semantics J K: Fml → iProp of the SL formulas Fml, which
typically depends on the invariant token P .

4. Finally, Nola’s invariant library gives the world satisfaction Winv J K ∈ iProp. The library also

provides the later-free proof rules (Fig. 3) for view shifts and Hoare triples with the world

satisfactionWinv J K, which depends on the whole semantics J K.

We also have simple restrictions on the parameters Fml and J K for soundness. First, the set of
formulas Fml may refer to iProp, but in a contractive way, or roughly speaking, under the guard of

the later functor ▶. The later functor ▶𝐴 [Gianantonio and Miculan 2002; Birkedal et al. 2012] is

a data type of items of the form next𝑎 (for 𝑎 ∈ 𝐴) for which the indexed equality =̃ is weakened

by the later modality ⊲: (next𝑎) =̃ (next𝑎′) ≜ ⊲ (𝑎 =̃𝑎′). This makes the domain equation for Fml
and iProp solvable by [America and Rutten 1989]. Second, the semantics J K: Fml → iProp should be
non-expansive, i.e., respect the indexed equality: P =̃ Q→ JPK =̃ JQK. This is a key to the soundness

of the access rules like inv-acc and thoare-inv (see the proof of Theorem 3.1).

2.2 Constructing the SL Formulas and Their Semantics
To use Nola’s higher-order ghost state like invariants, we should instantiate the parameters Fml
and J K. For that, we can design Fml as the set of abstract syntax trees encoding SL propositions and

define the semantics J K by induction. A typical example is shown in Fig. 6.

For a simple case, binary logical connectives such as ∗, −∗ and ∨ can be represented by binary

constructors *, -*, v: Fml × Fml → Fml, and the semantics J K over them can be defined naturally.

Also, the quantifiers ∀, ∃ can be encoded by higher-order abstract syntax, i.e., constructors

A

,

E

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 151. Publication date: June 2025.

151:10 Yusuke Matsushita and Takeshi Tsukada

Fml ∋ P , Q F𝜈,𝜇 P * Q | P -* Q | P v Q | A

𝐴 Φ |

E

𝐴 Φ

| 𝜙 (𝜙 ∈ Prop) | r|-> v |
�� ��P (P ∈𝜈 Fml) | ⊲̌ 𝑃 (𝑃 ∈ ▶ iProp)

⊲ 𝑃 ≜ ⊲̌ (next 𝑃)

JP * Q K ≜ JPK ∗ JQK JP -* Q K ≜ JPK −∗ JQK JP v Q K ≜ JPK ∨ JQK

J A

𝐴 Φ K ≜ ∀𝑎 ∈ 𝐴. JΦ 𝑎 K J E

𝐴 Φ K ≜ ∃𝑎 ∈ 𝐴. JΦ 𝑎 K J𝜙 K ≜ 𝜙

Jr|-> vK ≜ r ↦→ v J
�� ��P K ≜ P J ⊲̌ 𝑃 K ≜ ⊲̌ 𝑃 ⊲̌ (next 𝑃) ≜ ⊲ 𝑃

Fig. 6. Construction of Fml and J K for Nola’s invariants.

taking the mapping Φ : 𝐴 → Fml over the domain set 𝐴.6 Any pure proposition 𝜙 ∈ Prop can be

embedded into Fml. We can also support basic tokens such as the points-to token r ↦→ v by adding a
constructor r|-> v to Fml. In general, we can freely extend Fml and J K by adding new constructors

to Fml, as long as the semantics J K is well-defined for those constructors (we have a limitation due

to the paradoxes like Theorem 1.3; we closely analyze the expressivity later in § 4).

Remarkably, we can encode the invariant token as a constructor

�� ��P in Fml. This allows nesting
invariants in a later-free way, like the nested reference (1.4) in § 1.2. Thanks to the invariant token

P not depending on the semantics J K at all, the equation J
�� ��P K ≜ P is well-defined. Because

this is well-defined even if P is not structurally smaller than

�� ��P , technically, we can make Fml a
coinductive-inductive data type where the constructor

�� ��P is coinductive, i.e., guarding (as expressed

with 𝜈 in Fig. 6). This allows construction of infinite syntax trees (e.g., (list) in § 2.3).

Subsuming the existing approach. Notably, we can also add an impredicative, semantic con-
structor ⊲ 𝑃 ∈ Fml, embedding any SL proposition 𝑃 ∈ iProp into Fml under the later modality,

not only predicative, syntactic constructors independent of iProp discussed above. By this, Nola

pleasantly subsumes the existing approach: we can freely express ⊲ 𝑃 in Fml without adding to Fml
constructors specifically designed for any 𝑃 ∈ iProp.

For this, we add to Fml a constructor ⊲̌ 𝑃 for 𝑃 ∈ ▶ iProp, from which we derive ⊲ 𝑃 ≜ ⊲̌ (next 𝑃)
(for 𝑃 ∈ iProp). Technically, the guard of the later functor ▶ here makes Fml contractive over iProp,
which is crucial for soundness. We also define the semantics of ⊲̌ by ⊲̌: ▶ iProp → iProp, which
is the composite of the later modality ⊲ and the inverse of next. Technically, the function ⊲̌ is

non-expansive, and this makes J K non-expansive, which is vital for soundness.

Extensible construction of Fml and J K. Actually, Nola provides a general library for the data type
FmlCon with the interpretation J KCon that is parameterized over the choice of the set of constructors

Con, just like Martin-Löf’s W-types [Martin-Löf 1982]. This library allows further extensibility in

constructing the syntax. Each development using Nola can be parameterized by the constructor

information Con under premises on what constructors should be in Con for the proof. We can

get a closed proof by instantiating Con to what satisfies the premises, which is easy and can be

automated. This is pretty like how Iris achieves extensibility by parameterization over the family

of cameras for ghost state 𝛴 . Our library is remarkable in allowing both inductive and coinductive

constructors while retaining extensibility. Technically, we model coinductive data types using an

indexing (separate from the one used for the later modality ⊲), based on the guarded type theory

[Birkedal et al. 2010, 2012], which enables semantic reasoning about the productivity of coinductive

6
For universe consistency, the domain set 𝐴 here should be taken from a universe smaller than that of Fml. This rules out
impredicative quantification, but that is a reasonable limitation due to paradoxes (see § 4).

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 151. Publication date: June 2025.

Nola: Later-Free Ghost State for Verifying Termination in Iris 151:11

llist𝛷 r ≜ ⊲𝛷 r ∗

⊲ ∃s. r+1 ↦→ s ∗ llist𝛷 s
(llist)

list Φ r ≜
�� ��Φ r *�� ��E

s. r+1|-> s * list Φ s
(list)

[
llist𝛷 r

]
*(r+1)[

𝜆s. ⊲ llist𝛷 s
] (llist-tail)

[
Jlist Φ rK

]
*(r+1)[

𝜆s. Jlist Φ sK
] Winv J K (list-tail)

Fig. 7. Models and tail access rules for shared mutable lists: Later-weakened vs. Nola.

definitions. Technically, this is crucial for supporting recursive types, especially in our primary case

study, RustHalt (§ 7). Please refer to our Rocq mechanization for the details of this.

2.3 Verification Examples
As a simple, interesting target of verification, we consider shared mutable infinite singly linked lists,
which are modeled by infinitely nested invariants.

First, we consider the existing approach. We can define the SL proposition llist𝛷 r ∈ iProp for a
shared mutable infinite list starting at r whose elements satisfy the data invariant𝛷 : Addr → iProp,
by the recursive definition (llist) in Fig. 7, which has a unique solution by the contractiveness of

⊲− . Here, nested invariants are effectively used to make every part of lists sharable and mutable.

Unfortunately, in the existing approach, each reference to the head and the tail is weakened by

the later modality ⊲, which blocks termination verification. In particular, as shown in (llist-tail)

in Fig. 7, when we access the tail of the list llist𝛷 s, it is weakened by the later modality due to

the later-weakened rule thoare-linv. There is no chance to strip off the later modality in the

non-step-indexed total Hoare triple (recall the discussion in § 1.1).

Nola’s later-free invariants solve this situation. The recursive definition (list) in Fig. 7 gives the

SL formula list Φ r ∈ Fml for shared mutable singly linked lists,
7
which has a unique solution

as an infinite tree by the guard of the invariant constructor. Here, we use the design of Fml and
J K by Fig. 6, with the shorthand

E

𝑎. P𝑎 ≜

E(𝜆𝑎. P𝑎). Now each reference to the head and the tail

is not weakened by the later modality, thanks to Nola. As shown in (list-tail) in Fig. 7, we can

directly access the tail of the list Jlist𝛷 sK without the later modality thanks to the later-free

rule thoare-inv. This naturally enables termination verification.

For example, let us consider the following function iterc(f,c,r) for iterating over the list:

fn iterc(f,c,r) { if *c > 0 { f(r); *c = *c − 1; iterc(f,c,*(r+ 1)) } }.

It applies the function f to the first *c elements of the given list at r, where c stores a counter.

Remarkably, using Nola’s invariants, we can verify the following total Hoare triple assertion,
notably for any SL parameterized formula Φ : Addr → Fml and any function f:

∀r.
[
Φ r

]
f(r)

[
⊤
] Winv J K[

Jlist Φ rK ∗ c ↦→ 𝑛
]
iterc(f,c,r)

[
c ↦→ 0

] Winv J K
(2.1)

This says that the function iterc(f,c,r) terminates on a list at r under the premise that f safely

terminates under the data invariant Φ . For example, the premise is satisfied for Φ r ≜

E

𝑘. r|-> 3𝑘

and f ≜ fn (r) { *r = (*r)+3 }, i.e., when each element is a multiple of three and f(r) increments

the integer stored at r by three. The proof of (2.1) goes very naturally by meta-level induction
over the natural number 𝑛 ∈ N stored at the counter c. This is thanks to the later-free tail access
7

Technically, we can create Jlist Φ rK from cyclic references using an advanced variant of inv-alloc. Please refer to our

Rocq mechanization for the details.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 151. Publication date: June 2025.

151:12 Yusuke Matsushita and Takeshi Tsukada

lInv ≜ Auth

(
N

fin

⇀ Ag (▶ iProp)
)

Inv Fml ≜ Auth

(
N

fin

⇀ Ag Fml
)

⊲ 𝑃 ≜ ∃𝜄. ◦ [𝜄 ← ag (next 𝑃)] 𝛾lInv P ≜ ∃𝜄. ◦ [𝜄 ← ag P] 𝛾Inv

Wlinv ≜ ∃ 𝐼 : N
fin

⇀ ▶ iProp.

• ag 𝐼
𝛾lInv
∗ ∗
𝜄∈dom 𝐼

((
⊲̌ 𝐼 𝜄 ∗ d 𝜄

)
∨ e 𝜄

) Winv J K ≜ ∃ I : N
fin

⇀ Fml.

• ag I
𝛾Inv ∗ ∗

𝜄∈dom I

((
JI 𝜄K ∗ d 𝜄

)
∨ e 𝜄

)
Fig. 8. Invariant models: Later-weakened vs. Nola.

(list-tail). Please note that the counterpart of (2.1) for the later-weakened list llist𝛷 r cannot be

verified, due to the later modality ⊲ blocking the access to the tail list (llist-tail).

Remarkably, we can also verify various concurrent programs. For example, from (2.1) we can

derive the following total Hoare triple on a program where a list is concurrently mutated:[
Jlist Φ rK ∗ c ↦→𝑚 ∗ c′ ↦→ 𝑛

]
fork { iterc(f,c,r) }; iterc(f,c′,r)

[
c′ ↦→ 0

] Winv J K
.

Using (2.1), we can also verify a larger program that spawns an unbounded number of threads

that mutate an unbounded number of elements of a list, taking non-deterministic natural numbers

(ndnat); see our Rocq mechanization for the details.

For a more advanced example, we can consider the following variant iterc2 of the function

iterc, using two counters under the lexicographic order for termination:

fn iterc2(f,c,c′,r) { if *c > 0 || *c′ > 0 { f(r);

if *c > 0 { *c = *c − 1; *c′ = ndnat } else { *c′ = *c′ − 1 };

iterc2(f,c,c′,*(r+ 1)) } }

Notably, when decrementing the first counter c, we set the second counter c′ to a non-deterministic

natural number ndnat, which can be arbitrarily large. Using Nola, we can also easily prove the

following total Hoare assertion for this function, again for any Φ and f:

∀r.
[
Φ r

]
f(r)

[
⊤
] Winv J K[

Jlist Φ rK ∗ c ↦→𝑚 ∗ c′ ↦→ 𝑛
]
iterc2(f,c,c′,r)

[
c ↦→ 0 ∗ c′ ↦→ 0

] Winv J K
(2.2)

The proof of (2.2) goes in a natural way by induction in the meta-logic. We can take advantage of

the fact that each update of the pair (𝑚,𝑛) ∈ N × N of the values for the two counters follows the

lexicographic order, which is well-founded. Aside from the induction strategy, the whole proof is

analogous to (2.1), especially in the use of the later-free access by (list-tail).

We can also verify a richer variant of iterc and iterc2 that uses an arbitrary step function s
to decrease some state with respect to an arbitrary well-founded relation. Again, the proof goes

naturally by meta-logic induction. Please refer to our Rocq mechanization for the details.

3 Model of Nola’s Invariants
Now we briefly explain the semantic model of Nola’s invariants presented in § 2.

Model. Figure 8 presents the invariant models of the existing later-weakened approach and Nola

in parallel. Please refer to [Jung et al. 2018b] etc. for technical backgrounds.

Fortunately, Nola’s model is a straightforward generalization of Iris’s model, turning ▶ iProp
to Fml and ⊲̌: ▶ iProp → iProp to J K: Fml → iProp. Also, the model satisfies the dependencies

described in Fig. 5. In particular, the invariant token P does not depend on the semantics J K.
As previewed in § 1.2, the contractiveness of the set of SL formulas Fml over iProp is vital for the

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 151. Publication date: June 2025.

Nola: Later-Free Ghost State for Verifying Termination in Iris 151:13

domain equation on iProp to be solvable, technically because iProp depends on the global camera

in a negative (not strictly positive) position.

Soundness. Now that we have the model, we can prove the soundness of Nola’s invariants.

Theorem 3.1 (Soundness of Nola’s Invariant). The proof rules for Nola’s invariants shown in
Fig. 3 are sound with respect to the model of Fig. 8, for any choice of Fml and J K: Fml→ iProp.

Proof. Straightforward, largely just like Iris’s invariant. For the access rules inv-acc and thoare-

inv, we use the fact that the semantics J K is non-expansive, i.e., P =̃ Q implies JPK =̃ JQK, as
the invariant token P observes an indexed agreement. For winv-create, we set I : N

fin

⇀ Fml in
Winv J K to the empty map, which enables the universal quantification over J K. □

4 Expressivity
Nola gives higher-order ghost state parameterized over the set of formulas Fml and their semantics

J K: Fml → iProp, where the image {JPK | P ∈ Fml} determines the class of SL propositions that can

be expressed. As we see in § 2, we can design Fml and J K to support nested references, recursive

definitions, and any SL propositions under the later modality. However, there are also fundamental

limitations due to paradoxes like Theorem 1.3. What are the limits of expressivity? Our general

observation is as follows: expressivity can be extended as long as Fml and J K are well-defined, which
crucially depends on the absence of circularity in definition. Now we analyze this more closely.

Impossibility to express arbitrary SL propositions. First of all, it is impossible for Nola’s Fml
and J K to express arbitrary SL propositions; there is no free lunch. We cannot set Fml ≜? iProp and
J𝑃K ≜? 𝑃 fails, because this violates the contractiveness of Fml over iProp and causes bad circularity
between Fml and iProp. Also, we cannot set Fml ≜ ▶ iProp and Jnext 𝑃K ≜ 𝑃 , because the semantics

J K violates the non-expansiveness, or is ill-defined in some sense.

Inexpressibility of the total Hoare triple and view shift. Nola avoids the paradox of Landin’s
knot Theorem 1.3, because total Hoare triples cannot be embedded into Fml/J K without the

guard of the later modality, because that would cause bad circularity in the definition of the

semantics J K: Fml → iProp. More explicitly, if Fml had a later-free constructor thoare P e Ψ , the

expected semantics Jthoare P e Ψ K ≜ ?

[
JPK

]
e
[
𝜆v. JΨ vK

]𝑊 J K
involving the world satisfaction

𝑊 : (Fml → iProp) → iProp is ill-defined, due to the circular reference to J K in𝑊 J K.
For a similar reason, we cannot add to Fml a later-free constructor for the view shift 𝑃 ⇛𝑊 J K 𝑄 .

Technically, we also found a purely logical version of Theorem 1.3 for the view shift, which accounts

for this limitation. This purely logical paradox is based on the paradox found earlier by Krebbers

et al. [2017, § 5] but enjoys much simpler construction, not storing invariants and impredicative

quantifiers inside invariants unlike theirs.

For the partial Hoare triple, it suffices to use the later-weakened version ⊲
{
𝑃
}
e
{
𝛹
}Winv J K

,

since the partial Hoare triple admits step-indexing.

Inexpressibility and expressibility of impredicative quantifiers. Nola’s approach cannot

generally express unguarded impredicative quantifiers. For example, if we had a formula

E

X ∈
Fml. X *

�� ��X , its expected semantics J E

X ∈ Fml. X *
�� ��X K ≜ ? ∃ P ∈ Fml. JPK ∗ P is ill-defined due

to the circular reference to the whole semantics J K. Indeed, unrestricted second-order quantifiers in
Fml would cause Theorem 1.3, because the world satisfaction Winv J K is built with a second-order

quantifier over Fml (see the model Fig. 8). Still, impredicative quantifiers whose variables occur

only in guarded positions can generally be expressed, because the guards avoid circularity in the

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 151. Publication date: June 2025.

151:14 Yusuke Matsushita and Takeshi Tsukada

let mut l = 0;

let b = &mut l;

*b += 7;

print(l);

α
△α (E𝑛. l|-> 𝑛)

l :†α int

∃𝑛. l ↦→ 𝑛 l : int

[α]1 &
α (E𝑛. l|-> 𝑛)
b : &α mut int

[α]1−𝑞

&

α

𝑞 (

E

𝑛. l|-> 𝑛)
∃𝑛. l ↦→ 𝑛

†α∃𝑛. l ↦→ 𝑛 l : int

Fig. 9. Basic example of a borrow in Rust and its model by Nola.

semantics J K. For example, the formula

E

X ∈ Fml.
�� ��X can be safely added to Fml, as its semantics

J E

X ∈ Fml.
�� ��X K ≜ ∃ P ∈ Fml. P is well-defined.

Expressibility via stratification. As a further extension, by stratifying SL formulas [Ahmed et al.

2002], Nola can support rich connectives such as the total Hoare triple and (unguarded) higher-order

quantifiers. For example, we can build two sets of SL formulas, Fml0 and Fml1, where Fml1 contains
the total Hoare triple thoare0 P1 e Ψ1 that supports invariants on Fml0 (but not Fml1), supporting
invariant tokens P𝑖 on P𝑖 ∈ Fml𝑖 for both 𝑖 = 0, 1. This is well-defined, because we can first build the

level-0 semantics J K0 : Fml0 → iProp and then build the level-1 semantics J K1 : Fml1 → iProp, where
the total Hoare triple semantics Jthoare0 P e Ψ K1 ≜

[
JPK1

]
e
[
JΨ K1

] Winv J K0

has no circularity.

Note that this avoids the paradox of Landin’s knot Theorem 1.3. We can also introduce more layers

(than just two) for stratification to achieve greater expressivity.

5 Nola’s Later-Free Borrows
Now we present Nola’s later-free borrows, a later-free version of RustBelt’s borrows [Jung et al.

2018a; Jung 2020]. Borrows are an advanced type of higher-order ghost state that serves as the

semantic foundation for the ownership type system of Rust [Matsakis and Klock 2014].

5.1 Overview
What are borrows? Rust’s borrowing machinery [Matsakis and Klock 2014] is a successful feature

for managing ownership. It originates from Cyclone [Grossman et al. 2002] and earlier studies on

region types [Tofte and Talpin 1994, 1997; Gay and Aiken 1998].

Figure 9 shows a basic example of a borrow in Rust. First, l : int gets the exclusive ownership of

a new memory cell initialized with 0 (for simplicity, we consider an unbounded integer type int).
Then the ownership of l is temporarily borrowed by a newly createdmutable reference b : &α mut int.
The period of the borrow is denoted by the lifetime α. During the lifetime α, the borrower b has
the exclusive ownership of the memory cell, being able to update its content (*b += 7), while the
lender l gets frozen (l :†α int), with its access all suspended. After the lifetime α ends, the lender l
retrieves the ownership, being able to access the content again (print(l)).
Remarkably, there is no direct communication needed for the borrower b : &α mut T to return

the ownership to the lender l :†α T. The mutable reference &α mut T can simply be thrown away

at any time. For this advanced mechanism, in a sense, the borrowed object is shared between the

borrower and the lender, with its access controlled by the lifetime α.

Modeling borrows. To model Rust’s borrows, RustBelt developed the lifetime logic [Jung et al.

2018a; Jung 2020], an Iris library providing higher-order ghost state for Rust-style borrows. It

features the borrower token &
α ⊲ 𝑃 ∈ iProp (called full borrow and written as &

α

full 𝑃 by RustBelt),

which asserts that an object satisfying 𝑃 ∈ iProp is borrowed under the lifetime α, which can be

used to model the mutable reference type &α mut T. RustBelt gave a semantic proof of the memory

and thread safety guarantee of Rust’s ownership type system. It was later extended to verify various

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 151. Publication date: June 2025.

Nola: Later-Free Ghost State for Verifying Termination in Iris 151:15

⊤ ⇛ ∃α. [α]1 lft-alloc [α]1 ⇛ †α lft-end

JPK ⇛Wbor J K
&
α P ∗ △α P bor-lend-new †α ∗ △α P ⇛Wbor J K JPK lend-back

&
α P ∗ [α]𝑞 ⇛Wbor J K &

α

𝑞 P ∗ JPK
bor-open

&

α

𝑞 P ∗ JPK ⇛Wbor J K
&
α P ∗ [α]𝑞

obor-close

⊤ ⇛ ∃𝛾Bor . ∀J K. Wbor J K wbor-create

Fig. 10. Selected proof rules for Nola’s borrows.

interesting properties about Rust’s ownership type system [Dang et al. 2020; Yanovski et al. 2021;

Matsushita et al. 2022; Gäher et al. 2024]. Still, unfortunately, for the same reason as invariants ⊲ 𝑃 ,

RustBelt’s lifetime logic weakened the shared content by the later modality ⊲ and suffered from

later-weakened proof rules, and its application has been limited to safety verification.

Nola solves this situation by building later-free borrows. Actually, the approach is quite similar

to later-free invariants presented in § 2. Now we explain this machinery more in detail.

5.2 Nola’s Later-Free Borrows
Nola-specific aspects. Nola-specific aspects of Nola’s borrows are quite the same as Nola’s

invariants explained in § 2. Nola parameterizes RustBelt’s borrow machinery over the set of SL

formulas Fml and the semantics J K : Fml → iProp to achieve later-free proof rules. In particular,

we provide a new borrower token &
α P ∈ iProp that takes an SL formula P ∈ Fml, borrowing

its semantics JPK under α. Nola’s borrows restrict Fml to be contractive over iProp and J K to be

non-expansive. The dependencies like Fig. 5 hold also for Nola’s borrows.

How does the logic work? Figure 9 illustrates the flow of the ownership for the basic example in

Nola’s borrow machinery. Here, we assume a formula data type Fml like Fig. 6. By borrowing a

mutable integer object l : int, modeled as the points-to token ∃𝑛. l ↦→ 𝑛, we get a borrower token
&
α (E𝑛. l|-> 𝑛) for the borrower b : &α mut int and the lender token △α (E𝑛. l|-> 𝑛) for the frozen

original owner l :†α int. The borrower can get access to the content ∃𝑛. l ↦→ 𝑛 by depositing the

live lifetime token [α]𝑞 as a fractional witness that the lifetime α is still ongoing. While using the

content, the borrower temporarily turns into the open borrower token

&

α

𝑞 (

E

𝑛. l|-> 𝑛). By storing

back the content ∃𝑛. l ↦→ 𝑛, the borrower turns back into &
α (E𝑛. l |-> 𝑛) and retrieves [α]𝑞 .

When ending the lifetime α, the full token [α]1 is consumed into the dead lifetime token †α, which
is a persistent witness that α has ended. After †α is obtained, the lender token △α (E𝑛. l|-> 𝑛) can
be turned into ∃𝑛. l ↦→ 𝑛, modeling the unfrozen object l : int.
Figure 10 shows selected proof rules for Nola’s borrows. We use lft-alloc to allocate a fresh

lifetime and use lft-end to end it. Also, [α]𝑞+𝑟 ⇔ [α]𝑞 ∗ [α]𝑟 holds. The rule bor-lend-new

creates a new borrow over a content satisfying P ∈ Fml under the lifetime α, yielding a borrower
token &

α P and a lender token △α P . The borrower token accesses the content JPK with the witness

[α]𝑞 by the rules bor-open and obor-close. By the rule obor-close, the lender token retrieves

the content JPK by the witness †α. For accessing borrows, we use the world satisfaction Wbor J K
for Nola’s borrows, which can be created by wbor-create, just as in Nola’s invariant machinery.

For lifetimes, we also have the lifetime inclusion α ⊑ β ∈ iProp, a persistent assertion that a

lifetime α is outlived by β. The lifetime of the borrower and lender tokens can be modified by

lifetime inclusion (α ⊑ β implies &
β P⇒ &

α P and △α P⇒ △β P).

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 151. Publication date: June 2025.

151:16 Yusuke Matsushita and Takeshi Tsukada

Nola’s borrow machinery also provides advanced rules for subdividing a borrower into borrow-

ers on smaller parts (e.g., turning &α mut Vec<T> to &α mut T) and reborrowing a borrower (e.g.,

reborrowing b : &α mut T to get c : &β mut T and b :†β &α mut T), like RustBelt’s lifetime logic. Please

refer to our Rocq mechanization for more details.

Verification examples. Now we present some examples of verification using Nola’s borrows.

Example 5.1 (Dereference of a nested borrow). For an advanced example, we can reason about nested
borrows using Nola’s later-free borrows. We can model a nested mutable reference as the following

SL proposition, where the ownership type T is modeled as a parameterized SL formula Addr → Fml
(we extend Fig. 6 with a borrower constructor &α P interpreted as J&α P K ≜ &

α P):

r : &β mut &α mut T ≜ bbβ,αr T ≜ &
β
(E

s. r|-> s * &α (T s)
)
.

Remarkably, we can verify an expected total Hoare triple for the dereference of a nested mutable

reference *r : &β mut T:[
β ⊑ α ∗ [β]𝑞 ∗ bbβ,αr T

]
*r

[
𝜆s. [β]𝑞 ∗ &

β (T s)
] Wbor J K

.

Notably, we can get access to the inner reference &
β (T s) not weakened by the later modality ⊲,

thanks to Nola’s later-free borrows (recall (llist-tail) vs. (list-tail) in § 2.3). Technically, to prove this,

we use advanced rules for borrow subdivision and reborrowing, omitted from Fig. 10.

Rust also supports shared borrows &α T, which allows sharing the borrowed objects. We can

model them by combining Nola’s borrows with Nola’s invariants P explained in § 2.1.

Example 5.2 (Shared borrows over integers). For a simple example, an immutable shared borrow over

an integer r : &α int can be modeled as &α r|-> 𝑛 ,
8
an invariant storing a borrower. We can read

from r under this assertion (recall that world satisfactions can be combined by thoare-expand):[
&α r|-> 𝑛 ∗ [α]𝑞

]
*r

[
𝜆v. 𝑛 = v ∗ [α]𝑞

] Winv J K ∗Wbor J K
.

Remarkably, we can also model mutable shared borrows (or interior mutability) in Rust.

Example 5.3 (Shared borrows over mutexes). For example, a shared borrow over a mutex can be

modeled as follows, writing Tr for T (r+1):

r : &α Mutex<T> ≜ mbαr T ≜ &α
(
(r|-> false * &α Tr) v r|-> true

)
.

This model is a bit tricky, but its basic idea is to use an invariant for the disjunction over the two

states (unlocked and locked) of the mutex, with the twist of lifetime-based control by borrower

tokens. The reference r can get access to the content by acquiring the lock:[
mbαr T ∗ [α]𝑞

]
cas true false

[
𝜆v.

(
(v = true ∗ &

α Tr) ∨ v = false
)
∗ [α]𝑞

] Winv J K ∗Wbor J K
.

We can newly create a shared borrow of Mutex<T> along with a frozen lender as follows:

r ↦→ 𝑏 ∗ JTr K ∗ [α]𝑞 ⇛Winv J K ∗Wbor J K mbαr T ∗ △α
(E

𝑏′ . r|-> 𝑏′ * Tr
)
∗ [α]𝑞 .

6 Semantic Alteration by Magic Derivability
We discuss a crucial challenge about higher-order ghost state, semantic alteration, and present our

general solution to it, nicknamed magic derivability.

8
Precisely speaking, to support lifetime weakening, we can modify the invariant with ∃α′ ⊒ α and replace α with α

′
. Also,

technically, to allow non-atomic accesses, we can use the fractional points-to token, like

E

𝑞. &α r
𝑞
|-> 𝑛 .

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 151. Publication date: June 2025.

Nola: Later-Free Ghost State for Verifying Termination in Iris 151:17

der J ⇒ JJK+der der-sound der ∈ Deriv der-deriv(
∀ 𝛿 ∈ Deriv . ∗𝑛𝑖=0

JJ ′𝑖K
+
𝛿
−∗ JJK+

𝛿

)
⇒ ∀ 𝛿 ∈ Deriv . ∗𝑛𝑖=0

𝛿 J ′𝑖 −∗ 𝛿 J deriv-map

Fig. 11. Selected proof rules for magic derivability

Challenge: Semantic alteration. Nola’s clients can use syntactic SL formulas P ∈ Fml for higher-
order ghost state such as invariants P , which clears the later modality ⊲ and helps verification

especially of termination. For advanced usages, however, we often further want the power to

semantically alter such SL formulas. For example, suppose that wewant to give a semantic soundness
proof of a type system with the shared mutable reference type ref T, which is modeled using an

invariant

�� ��P . A key challenge is in verifying the subtyping rule over references, which derives

ref T ≤ ref U from T ≤ U and U ≤ T.
To achieve such high-level goals, higher-order ghost state like invariants should flexibly allow

various forms of semantic alteration of the SL formulas, such as the following:

J
�� ��P * Q K ⇔ J

�� ��Q * P K
r�� ���� ��P * Q

z
⇔

r�� ���� ��Q * P
z

α ⊑ β β ⊑ α

J
�� ��&α P K ⇔ J

�� ��&β P K
(6.1)

In the first case, for example, the formulas P *Q and Q *P are syntactically different but semantically

equivalent, so the equivalence should hold. We also want to perform such semantic alteration over

nested invariants, as in the second case. Moreover, the notion of semantic equivalence over SL

formulas should be able to depend on persistent SL hypothesis, as in the third case.

Unfortunately, the direct model considered so far, J
�� ��P K ≜ P , does not support semantic

alteration like (6.1). This is because the token P is modeled based on the plain agreement on Fml,
not considering its semantics (recall § 3). To resolve this, we need to relax the agreement on Fml
into a semantic one. The naive starting point is as follows:

J
�� ��P K ≜ ? ∃ Q s.t. JPK⇔ JQK. Q (6.2)

This uses a semantic agreement JPK⇔ JQK described by the semantics J K. Unfortunately, this
naive semantics (6.2) is ill-defined, because it has a circular self-reference JQK. So we need a good

substitute, or under-approximation, for the real semantic agreement JPK⇔ JQK.
A possible approach could be to build a syntactic proof system for the semantic agreement.

However, this really hurts the modularity and extensibility, because the soundness of the system

should be proved again every time we add new proof rules or constructors. Can we do better?

Our solution: Magic derivability. To solve this challenge, we found a general mechanism,

nicknamed magic derivability. Intuitively, it gives an approximate solution to naive recursive

equations like (6.2), based on a fixed point construction.

To use magic derivability, we first design the judgment J ∈ Judg, the input of the derivability. For
example: Judg ∋ J F P <=> Q . Then we parameterize the formula semantics J K𝛿 : Fml → iProp
over derivability candidates 𝛿 : Judg → iProp. For the running example, it is defined as follows,

modifying the semantics J K of Fig. 6 (excerpts):

J
�� ��P K𝛿 ≜ ∃ Q s.t. 𝛿 (P <=> Q). Q (6.3)

JP * Q K𝛿 ≜ JPK𝛿 ∗ JQK𝛿 Jr|-> vK𝛿 ≜ r ↦→ v

Finally, we can define a parameterized judgment semantics J K+ : (Judg → iProp) → (Judg → iProp).
For the running example, it is defined as follows: JP <=> Q K+

𝛿
≜ JPK𝛿 ⇔ JQK𝛿 .

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 151. Publication date: June 2025.

151:18 Yusuke Matsushita and Takeshi Tsukada

Now our magic derivability machinery gives the derivability der: Judg → iProp with the set of

valid derivability candidates Deriv ⊆ (Judg → iProp). The derivability der is roughly an approxi-

mate fixed point of J K+ : (Judg → iProp) → (Judg → iProp) (see Model below for the details). The

rules presented in Fig. 11 always holds. Remarkably, the derivability der is always sound der-sound.

We also have the rule deriv-map for deducing a derivability candidate 𝛿 J by semantics J K+.
For the invariant

�� ��P interpreted as (6.3), the access rules analogous to the original invariant (e.g.,

thoare-inv) is obtained by the soundness der-sound, and the allocation rule like the original

invariant (inv-alloc) is obtained by the rule deriv-map with 𝑛 = 0 (we define the standard

semantics by the derivability, i.e., J K ≜ J Kder):[
JPK ∗ 𝑄

]
ae

[
𝜆v. JPK ∗ 𝛹 v

] Winv J K[
J
�� ��P K ∗ 𝑄

]
ae

[
𝛹
] Winv J K

JPK ⇛Winv J K J
�� ��P K

Also, thanks to deriv-map, we have the following semantic alteration rule for the invariant:(
∀ 𝛿 ∈ Deriv . JPK𝛿 ⇔ JQK𝛿

)
⇒ ∀ 𝛿 ∈ Deriv . J

�� ��P K𝛿 ⇔ J
�� ��Q K𝛿 (6.4)

Using (6.4), we can easily derive the rules of (6.1), even generally for J K𝛿 of any 𝛿 ∈ Deriv .
With magic derivability, we can now semantically and flexibly model and verify subtyping rules.

For example, we can define the semantics of subtyping T ≤ U as follows, an implication universally

quantified over the choice of 𝛿 ∈ Deriv : JT ≤ UK ≜ ∀𝛿 ∈ Deriv, 𝑣 . JT 𝑣 K𝛿⇒ JU 𝑣 K𝛿 . Now we can

smoothly verify the subtyping rules over references, such as JT ≤ UK∧ JU ≤ TK⇒ Jref T ≤ ref UK.
This technique is used in our primary case study, RustHalt (§ 7).

Model. Technically, Deriv is defined as the smallest set closed under the application of J K+ (𝛿 ∈
Deriv implies J K+

𝛿
∈ Deriv) and under the conjunction over any subset (𝑆 ⊆ Deriv implies (𝜆J .∀𝛿 ∈

𝑆. 𝛿 J) ∈ Deriv). Then, der is defined as the conjunction over Deriv (der ≜ 𝜆J .∀𝛿 ∈ Deriv . 𝛿 J).
This model is close to the standard iterative computation of greatest fixed points. Indeed, der
becomes the greatest fixed point of J K+ if J K+ happens to be monotone.

7 RustHalt: A Semantic Foundation for Total Correctness Verification of Rust Programs
To demonstrate the power of Nola, we developed a prototype of RustHalt, the first semantic and

mechanized foundation for total correctness verification of Rust programs.

High-level overview. There is a rich body of work on functional verification of Rust programs

[Ullrich 2016; Astrauskas et al. 2019; Matsushita et al. 2020; Ho and Protzenko 2022; Matsushita

et al. 2022; Denis et al. 2022; Lattuada et al. 2023; Gäher et al. 2024]. Of particular note is RustHorn

[Matsushita 2019; Matsushita et al. 2020, 2021], which found a general way to encode mutable

references as first-class values, which uses prophecies [Abadi and Lamport 1988; Vafeiadis 2008;

Jung et al. 2020b], imaginary values for future information. Its key idea can be summarized as

follows: a prophecy can let the borrower virtually communicate to the lender the final result of the

mutation. This simple idea has proved widely useful in existing work [Matsushita et al. 2020; Denis

et al. 2022; Skotåm 2022; Fiala et al. 2023; Gäher et al. 2024].

However, proving the soundness of this approach is challenging, because it involves a subtle

interaction between borrows and prophecies. RustHornBelt [Matsushita 2021; Matsushita et al.

2022] extended RustBelt [Jung et al. 2018a] to prove the soundness of RustHorn-style functional

verification. Its idea has been recently inherited by RefinedRust [Gäher et al. 2024], focusing more

on automation. However, their approach could not support termination verification, again due to

the later modality. This is a real problem, since total correctness verification is an actively used

feature in real-world Rust verifiers [Ho and Protzenko 2022; Denis et al. 2022; Lattuada et al. 2023].

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 151. Publication date: June 2025.

Nola: Later-Free Ghost State for Verifying Termination in Iris 151:19

a : int, b : int ⊢ a + b ⊣ r. r : int ⇝ 𝜆post, [𝑎, 𝑏] . post [𝑎 + 𝑏] int-add

a : Box<T> ⊢ &mut *a ⊣ r. r : &α mut T, a :†α Box<T> ⇝
𝜆post, [𝑎] . ∀𝑎′ . post [(𝑎, 𝑎′), 𝑎′]

box-mut-borrow

a : &α mut T, b : T ⊢ *a = b ⊣ a : &α mut T ⇝
𝜆post, [(𝑎, 𝑎′), 𝑏] . post [(𝑏, 𝑎′)] mutref-write

a : &α mut T ⊢ & *a ⊣ r. r : &α T ⇝ 𝜆post, [(𝑎, 𝑎′)] . 𝑎′ = 𝑎→ post [𝑎] mutref-share

Γ ⊢ e
[
a/x, fn f(x̄){ e }/f

]
⊣ r. Γ′ ⇝ pre

Γ, Γ+ ⊢ (fn f(x̄){ e })(ā) ⊢ r. Γ′, Γ+ ⇝ 𝜆post, [𝑎, 𝑐] . pre (𝜆 ¯𝑏. post [¯𝑏, 𝑐]) [𝑎]
fn-rec-call

T ≻ get ∀𝑐.
(
a : T, Γ ⊢ e ⊢ r. Γ′ ⇝ 𝜆post, [𝑎, ¯𝑏] . get 𝑎 = 𝑐 ∧ pre post [𝑎, ¯𝑏]

)
a : T, Γ ⊢ e ⊢ r. Γ′ ⇝ pre

real

Fig. 12. Selected type-spec rules in RustHalt. Lifetime constraints implicit in Rust are omitted.

RustHalt solves this situation by reformulating RustHornBelt [Matsushita et al. 2022] using our

framework Nola for later-free higher-order ghost state. In the scope of this paper, we fall short

of re-mechanizing all the rules of RustHornBelt. Still, we have covered key technical points and

interesting examples, especially regarding mutable borrows.

Type-spec system. To model functional verification based on Rust’s ownership types, RustHalt

builds a type-spec system, which extends Rust’s typing judgments with functional specifications.

Like in RustHornBelt, RustHalt’s type-spec judgment has the following form: Γ ⊢γ e ⊣ r. Γ′ ⇝ pre.
What comes before⇝ is a usual ownership typing judgment, consisting of the input type context

Γ, the expression e, and the output type context Γ
′
which can refer to the return variable r. Each

element of a type context is of form a : T or a :†α T (as in § 5), where the first form can be read as

usual and the second form means that a is currently lending its object T under the lifetime α. The

subscript γ of a type judgment is the lifetime for the current execution (typically the conjunction of

all available lifetimes), which we usually omit for presentation.What comes after⇝ is the functional
specification, pre : (⌊Γ′⌋ → Prop) → (⌊Γ⌋ → Prop). Technically, it is the predicate transformer (as

in Dijkstra’s weakest precondition calculus [Dijkstra 1976]), calculating the precondition pre post :
⌊Γ⌋ → Prop for each postcondition post : ⌊Γ′⌋ → Prop; more intuitively, it is a kind of functional

program in the continuation passing style with the continuation post. The representation sort

⌊Γ⌋ for a type context is the product (or heterogeneous list) of the representation sort ⌊T⌋ for
the type of each element a :? T in the type context. The representation sort for core types is as

follows, for example: ⌊int⌋ ≜ Z, ⌊(T,U)⌋ ≜ ⌊T⌋ × ⌊U⌋, ⌊Box<T>⌋ ≜ ⌊T⌋, ⌊&α T⌋ ≜ ⌊T⌋,
⌊&α mut T⌋ ≜ ⌊T⌋ × ⌊T⌋. Most interestingly, each mutable reference &α mut T is functionally

represented as the pair (𝑎, 𝑎′) ∈ ⌊T⌋ × ⌊T⌋ of the current value 𝑎 ∈ ⌊T⌋ and the prophecy 𝑎′ ∈ ⌊T⌋,
which fetches the final value of the borrowed object ahead of the time.

Figure 12 lists selected type-spec rules (typing rules with specifications) in RustHalt. As a warm-

up, integer addition (int-add) is functionally modeled by inputting the values 𝑎, 𝑏 ∈ Z and passing

the output 𝑎 + 𝑏 ∈ Z to the continuation post. Things become really interesting with mutable

borrows. On mutable borrowing (box-mut-borrow), a fresh prophecy 𝑎′ is taken, which is shared

between the borrower (mutable reference) modeled as (𝑎, 𝑎′) and the lender modeled as 𝑎′. When

we write to the mutable reference (mutref-write), where the prophecy 𝑎′ is retained. When

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 151. Publication date: June 2025.

151:20 Yusuke Matsushita and Takeshi Tsukada

the mutable reference finally loses its write access (for example, mutref-share), it resolves the
prophecy 𝑎′ to the real value 𝑎 at that time, observing 𝑎′ = 𝑎. We also have advanced rules about

mutable references involving borrow subdivision and reborrowing.

What is really new about RustHalt is that it allows verifying total correctness. For that, RustHalt
introduces a new rule fn-rec-call for the recursive function call, which just unfolds the function

definition framing some part. We can prove total correctness through arbitrary induction in the

meta-logic (or more specifically, Rocq). Also, for that, RustHalt introduces a new auxiliary rule real.

The judgment T ≻ get says that we can take out the real, non-prophetic part from the representation

of T by the function get : ⌊T⌋ → 𝐶 (for some sort 𝐶). For example, &α mut int ≻ 𝜆 (𝑛, 𝑛′). 𝑛 holds.

The rule real enables meta-level case analysis over the real part 𝑐 of an object a : T.

Verification examples. For example, let us consider the following function for iterating over a

singly linked list (a variant of iterc in § 2.3):

fn iter(f, l) { match l { Nil => (), Cons(a,l′) => { f(a); iter(f, *l′) } } }

Here, we define the list type List<T> as the following recursive data type:

enum List<T> { Nil, Cons(T, Box<List<T>>) }

We functionally represent List<T> using mathematical lists: ⌊List<T>⌋ ≜ List ⌊T⌋.
Remarkably, in RustHalt, we can verify the following total correctness assertion, notably for any

Rust ownership type T, any Rust function f, and any pure function 𝑓 : ⌊T⌋ → ⌊T⌋:
∀a. a : &α mut T ⊢ f(a) ⊣ _. ⇝ 𝜆post, [(𝑎, 𝑎′)] . 𝑎′ = 𝑓 𝑎→ post []

l : &α mut List<T> ⊢ iter(f,l) ⊣ _. ⇝ 𝜆post, [(𝑙, 𝑙 ′)] . 𝑙 ′ =map 𝑓 𝑙→ post []
(7.1)

The premise of (7.1) says that the function f always terminates when called with a mutable reference

a : &α mut T, performing the update specified by the function 𝑓 : ⌊T⌋ → ⌊T⌋ (setting the prophecy
𝑎′ to 𝑓 𝑎). The assertion (7.1) says that, under this premise, the function call iter(f,l) always

terminates under l : &α mut List<T>, performing the update specified by the function map 𝑓 :

List ⌊T⌋ → List ⌊T⌋. We can prove this total correctness in RustHalt as follows: first apply real to

get the length 𝑛 ∈ N of the input list 𝑙 (as &α mut List<T> ≻ 𝜆 (𝑙, 𝑙 ′). length 𝑙 holds for any T), and
then simply do mathematical induction over 𝑛 in the meta-logic.

We have also verified a richer variant of this example that uses a modified list type that uses the

mutable reference type &α mut U instead of the owned pointer type Box<T> for self-reference. We

have also verified functions implementing the Ackermann function (one in a usual style and one

using a mutable reference for the output), using meta-level induction on the lexicographic order

over pairs of natural numbers. Please see our Rocq mechanization for the details.

Semantic model by Nola. RustHalt proved the soundness of this type-spec system by modeling

Rust’s ownership types as (parameterized) syntactic SL formulas, instead of semantic SL propositions

as in the existing work. More specifically, RustHalt sets the domain RustTy𝐴 for Rust’s ownership

types (where 𝐴 is the representation sort) as the following record:{
size : N; own : Clair 𝐴 × List Val × ThreadId × N → Fml;

shr : Addr × Lft × Clair 𝐴 × ThreadId × N → Fml;
}
.

The field size tells the low-level size in the memory. The field own models the ownership of the

type T in separation logic. The field shr is a variant of that, used for shared references &α T. This is
the same as the domain used by RustHornBelt, just except that the syntactic formula Fml is used
instead of the semantic proposition iProp. Also, the model of each Rust ownership type in RustHalt

is pretty much the same as in RustHornBelt, except that later-free constructors in Fml are used for

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 151. Publication date: June 2025.

Nola: Later-Free Ghost State for Verifying Termination in Iris 151:21

higher-order ghost state. In particular, to model mutable and shared references in Rust, we use the

borrower token &α P from Nola’s later-free borrows (§ 5).

Remarkably, RustHalt enjoys semantic and extensible type soundness proof, or semantic typing
[Timany et al. 2024b], just as in RustBelt and RustHornBelt. To prove each type-spec rule, we just

need to separately prove its semantic interpretation in the separation logic Iris. So we can easily add

new Rust features and typing rules, enjoying a high level of extensibility. For that, each type-spec

judgment is semantically interpreted as an SL assertion, namely as follows:

JΓ ⊢γ e ⊣ r. Γ′ ⇝ preK ≜ ∀ ˆpost, 𝑡, 𝑞.
[
∃ ¯𝑎.

〈
𝜆𝜋 . pre (ˆpost 𝜋) (𝑎 𝜋)

〉
∗ [γ]𝑞 ∗ [𝑡] ∗ JΓK(¯𝑎, 𝑡)

]
e

[
𝜆r. ∃ ¯

ˆ𝑏.
〈
𝜆𝜋 . ˆpost 𝜋 (ˆ𝑏 𝜋)

〉
∗ [γ]𝑞 ∗ [𝑡] ∗ JΓ′K(¯ˆ𝑏, 𝑡)

]Wrh J K
.

Again, this is almost the same as RustHornBelt’s model, just except that we use the total Hoare triple
with a custom world satisfaction Wrh J K, the separating conjunction of required world satisfac-

tions including Winv J K and Wbor J K. Here, Ja :? TK(¯𝑎, 𝑡) is defined as the separating conjunction

∗ Ja :? TK(𝑎, 𝑡) of the semantics for each object, where Ja : TK(𝑎, 𝑡) is defined as ∃𝑑. JT (𝑎, [a], 𝑡, 𝑑)K,
where 𝑑 is the depth of the object, an auxiliary parameter inherited from RustHornBelt. The SL

assertion

〈
𝜆𝜋 . 𝜙𝜋

〉
is a prophecy observation, taken from the parametric prophecies machinery

proposed by RustHornBelt [Matsushita et al. 2022]. Notably, in Nola, we have built a general mech-

anism called prophetic borrows, which sophisticates RustHornBelt’s approach of mixing borrows

and parametric prophecies, and RustHalt takes advantage of this mechanism. Please refer to the

Rocq mechanization for the details.

8 Mechanization
Here we report on our Rocq mechanization for Nola [Matsushita and Tsukada 2025], whose latest

version is available at https://github.com/hopv/nola. Our core achievement is the mechanization of

Nola’s parameterized higher-order ghost state of invariants (§ 2, § 3) and borrows (§ 5), including

the soundness of each proof rule with respect to the semantic model. For that, we mechanized a new

library for parameterized view shifts and Hoare triples with a custom world satisfaction including

new adequacy theorems (§ 2.1), and also extended 𝜆Rust, the core language of RustBelt [Jung et al.

2018a], to support parameterized Hoare triples. We also mechanized general libraries for magic

derivability (§ 6) and for extensible construction of the formula data type and interpretation (§ 2.2).

Using these libraries, we mechanized the verification examples discussed in the paper, including

the simple examples of total correctness proof Theorems 1.1 and 1.2 (§ 1.1), the examples on shared

mutable lists (§ 2.3), the examples on borrows Theorems 5.1 to 5.3 (§ 5.2), and the semantic alteration

examples (6.1) (§ 6). We also mechanized paradoxes mentioned in the paper, including Theorem 1.3.

Last but not least, we mechanized our primary case study, a prototype of RustHalt (§ 7), including

the type-spec rules and the verification examples discussed in the paper. Our Rocq mechanization

does not depend on any axioms except uniqueness of identity proofs.

9 Related Work
Invariants with later-free rules. Some existing studies [Swamy et al. 2020; Svendsen and Birkedal

2014; Svendsen et al. 2013; Spies et al. 2022] provide separation logic with invariants with later-free

proof rules, but none of them has been applied to termination verification. Moreover, all of them

either use step-indexed program logic or restrict nesting of invariants, unlike Nola.

SteelCore [Swamy et al. 2020] is an automated SL-based verification framework that provides

nested invariants with later-free proof rules. However, its program logic is actually step-indexed.

As discussed in [Swamy et al. 2020, § 4.4], it uses “monotonic state” modeled by Ahman et al. [2017],

which “has a ‘later’ modality in disguise”. Moreover, it lacks a formal proof of the soundness.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 151. Publication date: June 2025.

https://github.com/hopv/nola

151:22 Yusuke Matsushita and Takeshi Tsukada

Later credits £𝑛 [Spies et al. 2022], a feature recently introduced to Iris, provide prepaid invariants
𝑃 pre with a later-free access rule InvPreOpen for the partial Hoare triple [Spies et al. 2022, § 6.1].
However, later credits fundamentally depend on step-indexing and thus cannot be simply applied

to termination verification. Indeed, a variant of Theorem 1.3 holds for prepaid invariants.

Separation logics iCAP [Svendsen and Birkedal 2014] and HOCAP [Svendsen et al. 2013] support

invariants with later-free proof rules, whose soundness does not seem to rely on step-indexing.
9

While they may be able to be modified for termination verification, they do not support genuine
nesting of invariants. iCAP does not allow any kind of nesting of the invariant connective. HOCAP

prohibits nesting invariants of overlapping region types 𝑡 , which is vital to HOCAP’s soundness.
10

Unlike theirs, Nola allows genuine nesting of invariants (e.g., infinite shared mutable lists in § 2.3).

Liveness verification in step-indexed logic. As discussed in § 1.1, the existing approach to

verifying liveness properties in step-indexed program logic, transfinite indexing [Spies et al. 2021b]

and its application Transfinite Iris [Spies et al. 2021a], suffers from some fundamental limitations.

Some studies propose step-indexed separation logic that can verify termination-preserving refine-

ments [Tassarotti et al. 2017; Timany et al. 2024a]. To achieve this, they reduced such refinements

(which may appear to be a liveness property) to a safety property, by imposing a strong constraint

requiring that the stuttering of the target program with respect to the source should be bounded.

On the other hand, as we saw in earlier sections, Nola naturally supports verification of un-

bounded (non-fair) termination, which is a simple but genuine liveness property.

Tackling the later modality in safety verification. As mentioned in § 1.1, the later modality ⊲

can be problematic even in safety verification. Although some workarounds have been proposed,

they are generally cumbersome and limited in applicability. RustBelt [Jung et al. 2018a] used a

workaround called delayed sharing [Jung 2020, Chapter 12], which operates on an object (turning

a mutable reference to a shared reference) only when each subobject gets accessed, like lazy

evaluation, in order to avoid stripping off unboundedly many laters in one go. Unfortunately, this

makes the model quite complicated, and the delaying technique does not work for all types of ghost

operations. RustHornBelt [Matsushita et al. 2022] instead proposed a technique dubbed flexible
step-indexing: enrich the program logic so that increasingly many laters for each program step

(typically, 𝑘 laters at the 𝑘-th step) can be stripped, with the help of time receipts

▷◁ 𝑛 [Mével et al.

2019] for lower-bounding 𝑘 . They used this to traverse the entire object in one go and immediately

get the witness that each prophecy in the object is unresolved, which cannot be attained by the

above-mentioned delaying technique. Flexible step-indexing has been used in other recent projects

[Hinrichsen et al. 2022; Gondelman et al. 2023], but it requires a cumbersome bookkeeping of the

number of program steps. One recent progress is later credits £𝑛 [Spies et al. 2022], which own

the right to eliminate 𝑛 laters under a modified view shift ⇛le, satisfying £𝑛 ∗ ⊲𝑛 𝑃 ⇛le 𝑃 . It adds

some flexibility, but still requires a cumbersome bookkeeping of the number of laters.

Recent work on Nola. The first author’s Ph.D. dissertation [Matsushita 2023] presented an earlier

version of Nola. Recently, inspired by Nola, Lee et al. [2025] developed Lilo, a higher-order relational

concurrent separation logic for liveness verification. Lilo refines Fairness Logic [Lee et al. 2023]

using Nola-style invariants instantiated with stratified SL formulas as discussed in § 4. Unlike the

earlier version and Lilo, the latest version of Nola presented in this paper newly supports arbitrary

semantic SL propositions 𝑃 ∈ iProp under the later modality in higher-order ghost state and comes

with extensible construction of coinductive-inductive syntax trees.

9
HOCAP is step-indexed, but Svendsen et al. [2013, § 4] says that this is just for supporting nested Hoare triples.

10
Svendsen et al. [2013, § 2.2] says that such nesting introduces “self-referential region assertions” that generally “do not

admit modular stability proofs”.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 151. Publication date: June 2025.

Nola: Later-Free Ghost State for Verifying Termination in Iris 151:23

Acknowledgments
We express unreserved gratitude to Naoki Kobayashi for supervising the first author for his Ph.D.

dissertation [Matsushita 2023], a precursor to this work.We also thank Ralf Jung and the anonymous

reviewers for their helpful comments. This research was supported in part by the Hakubi Project

at Kyoto University and JSPS KAKENHI Grant Numbers JP24KJ0133 and JP22KJ0561 for the first

author, and JSPS KAKENHI Grant Numbers JP25H00446, JP23K24820, and JP20H05703 for the

second author.

References
Martín Abadi and Leslie Lamport. 1988. The Existence of Refinement Mappings. In Proceedings of the Third Annual

Symposium on Logic in Computer Science (LICS ’88), Edinburgh, Scotland, UK, July 5-8, 1988. IEEE Computer Society,

165–175. doi:10.1109/LICS.1988.5115

Danel Ahman, Cédric Fournet, Catalin Hritcu, Kenji Maillard, Aseem Rastogi, and Nikhil Swamy. 2017. Recalling a

Witness: Foundations and Applications of Monotonic State. CoRR abs/1707.02466 (2017). arXiv:1707.02466 http:

//arxiv.org/abs/1707.02466

Amal J. Ahmed, Andrew W. Appel, and Roberto Virga. 2002. A Stratified Semantics of General References Embeddable

in Higher-Order Logic. In 17th IEEE Symposium on Logic in Computer Science (LICS 2002), 22-25 July 2002, Copenhagen,
Denmark, Proceedings. IEEE Computer Society, 75. doi:10.1109/LICS.2002.1029818

Pierre America and Jan J. M. M. Rutten. 1989. Solving Reflexive Domain Equations in a Category of Complete Metric Spaces.

J. Comput. Syst. Sci. 39, 3 (1989), 343–375. doi:10.1016/0022-0000(89)90027-5
Andrew W. Appel and David A. McAllester. 2001. An Indexed Model of Recursive Types for Foundational Proof-Carrying

Code. ACM Trans. Program. Lang. Syst. 23, 5 (2001), 657–683. doi:10.1145/504709.504712
Vytautas Astrauskas, Peter Müller, Federico Poli, and Alexander J. Summers. 2019. Leveraging Rust Types for Modular

Specification and Verification. Proc. ACM Program. Lang. 3, OOPSLA (2019), 147:1–147:30. doi:10.1145/3360573

Robert Atkey. 2010. Amortised Resource Analysis with Separation Logic. In Programming Languages and Systems, 19th
European Symposium on Programming, ESOP 2010, Held as Part of the Joint European Conferences on Theory and Practice
of Software, ETAPS 2010, Paphos, Cyprus, March 20-28, 2010. Proceedings (Lecture Notes in Computer Science, Vol. 6012),
Andrew D. Gordon (Ed.). Springer, 85–103. doi:10.1007/978-3-642-11957-6_6

Lars Birkedal, Rasmus Ejlers Møgelberg, Jan Schwinghammer, and Kristian Støvring. 2012. First Steps in Synthetic Guarded

Domain Theory: Step-indexing in the Topos of Trees. Log. Methods Comput. Sci. 8, 4 (2012). doi:10.2168/LMCS-8(4:1)2012

Lars Birkedal, Kristian Støvring, and Jacob Thamsborg. 2010. The Category-Theoretic Solution of Recursive Metric-Space

Equations. Theor. Comput. Sci. 411, 47 (2010), 4102–4122. doi:10.1016/j.tcs.2010.07.010
Stephen Brookes and Peter W. O’Hearn. 2016. Concurrent Separation Logic. ACM SIGLOG News 3, 3 (2016), 47–65.

doi:10.1145/2984450.2984457

Stephen D. Brookes. 2004. A Semantics for Concurrent Separation Logic. In CONCUR 2004 - Concurrency Theory, 15th
International Conference, London, UK, August 31 - September 3, 2004, Proceedings (Lecture Notes in Computer Science,
Vol. 3170), Philippa Gardner and Nobuko Yoshida (Eds.). Springer, 16–34. doi:10.1007/978-3-540-28644-8_2

Alexandre Buisse, Lars Birkedal, and Kristian Støvring. 2011. Step-Indexed Kripke Model of Separation Logic for Storable

Locks. In Twenty-seventh Conference on the Mathematical Foundations of Programming Semantics, MFPS 2011, Pittsburgh,
PA, USA, May 25-28, 2011 (Electronic Notes in Theoretical Computer Science, Vol. 276), Michael W. Mislove and Joël Ouaknine

(Eds.). Elsevier, 121–143. doi:10.1016/j.entcs.2011.09.018

Arthur Charguéraud. 2011. Characteristic formulae for the verification of imperative programs. In Proceeding of the 16th
ACM SIGPLAN international conference on Functional Programming, ICFP 2011, Tokyo, Japan, September 19-21, 2011,
Manuel M. T. Chakravarty, Zhenjiang Hu, and Olivier Danvy (Eds.). ACM, 418–430. doi:10.1145/2034773.2034828

Arthur Charguéraud and François Pottier. 2015. Machine-Checked Verification of the Correctness and Amortized Complexity

of an Efficient Union-Find Implementation. In Interactive Theorem Proving - 6th International Conference, ITP 2015, Nanjing,
China, August 24-27, 2015, Proceedings (Lecture Notes in Computer Science, Vol. 9236), Christian Urban and Xingyuan

Zhang (Eds.). Springer, 137–153. doi:10.1007/978-3-319-22102-1_9

Arthur Charguéraud and François Pottier. 2019. Verifying the Correctness and Amortized Complexity of a Union-Find

Implementation in Separation Logic with Time Credits. J. Autom. Reason. 62, 3 (2019), 331–365. doi:10.1007/S10817-017-
9431-7

Arthur Charguéraud. 2025. Separation Logic Foundations. Software Foundations, Vol. 6. https://softwarefoundations.cis.

upenn.edu/slf-current/ Version 2.3.

Hoang-Hai Dang, Jacques-Henri Jourdan, Jan-Oliver Kaiser, and Derek Dreyer. 2020. RustBelt Meets Relaxed Memory. Proc.
ACM Program. Lang. 4, POPL (2020), 34:1–34:29. doi:10.1145/3371102

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 151. Publication date: June 2025.

https://doi.org/10.1109/LICS.1988.5115
https://arxiv.org/abs/1707.02466
http://arxiv.org/abs/1707.02466
http://arxiv.org/abs/1707.02466
https://doi.org/10.1109/LICS.2002.1029818
https://doi.org/10.1016/0022-0000(89)90027-5
https://doi.org/10.1145/504709.504712
https://doi.org/10.1145/3360573
https://doi.org/10.1007/978-3-642-11957-6_6
https://doi.org/10.2168/LMCS-8(4:1)2012
https://doi.org/10.1016/j.tcs.2010.07.010
https://doi.org/10.1145/2984450.2984457
https://doi.org/10.1007/978-3-540-28644-8_2
https://doi.org/10.1016/j.entcs.2011.09.018
https://doi.org/10.1145/2034773.2034828
https://doi.org/10.1007/978-3-319-22102-1_9
https://doi.org/10.1007/S10817-017-9431-7
https://doi.org/10.1007/S10817-017-9431-7
https://softwarefoundations.cis.upenn.edu/slf-current/
https://softwarefoundations.cis.upenn.edu/slf-current/
https://doi.org/10.1145/3371102

151:24 Yusuke Matsushita and Takeshi Tsukada

Xavier Denis, Jacques-Henri Jourdan, and Claude Marché. 2022. Creusot: A Foundry for the Deductive Verification of Rust

Programs. In Formal Methods and Software Engineering - 23rd International Conference on Formal Engineering Methods,
ICFEM 2022, Madrid, Spain, October 24-27, 2022, Proceedings (Lecture Notes in Computer Science, Vol. 13478), Adrián Riesco

and Min Zhang (Eds.). Springer, 90–105. doi:10.1007/978-3-031-17244-1_6

Edsger W. Dijkstra. 1976. A Discipline of Programming. Prentice-Hall. https://www.worldcat.org/oclc/01958445

Jonás Fiala, Shachar Itzhaky, Peter Müller, Nadia Polikarpova, and Ilya Sergey. 2023. Leveraging Rust Types for Program

Synthesis. Proc. ACM Program. Lang. 7, PLDI (2023), 1414–1437. doi:10.1145/3591278
Dan Frumin, Robbert Krebbers, and Lars Birkedal. 2018. ReLoC: AMechanised Relational Logic for Fine-Grained Concurrency.

In Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2018, Oxford, UK, July 09-12,
2018, Anuj Dawar and Erich Grädel (Eds.). ACM, 442–451. doi:10.1145/3209108.3209174

Lennard Gäher, Michael Sammler, Ralf Jung, Robbert Krebbers, and Derek Dreyer. 2024. RefinedRust: A Type System for

High-Assurance Verification of Rust Programs. Proc. ACM Program. Lang. 8, PLDI (2024), 1115–1139. doi:10.1145/3656422
Lennard Gäher, Michael Sammler, Simon Spies, Ralf Jung, Hoang-Hai Dang, Robbert Krebbers, Jeehoon Kang, and Derek

Dreyer. 2022. Simuliris: A Separation Logic Framework for Verifying Concurrent Program Optimizations. Proc. ACM
Program. Lang. 6, POPL (2022), 1–31. doi:10.1145/3498689

David Gay and Alexander Aiken. 1998. Memory Management with Explicit Regions. In Proceedings of the ACM SIGPLAN ’98
Conference on Programming Language Design and Implementation (PLDI), Montreal, Canada, June 17-19, 1998, Jack W.

Davidson, Keith D. Cooper, and A. Michael Berman (Eds.). ACM, 313–323. doi:10.1145/277650.277748

Pietro Di Gianantonio and Marino Miculan. 2002. A Unifying Approach to Recursive and Co-recursive Definitions. In

Types for Proofs and Programs, Second International Workshop, TYPES 2002, Berg en Dal, The Netherlands, April 24-28,
2002, Selected Papers (Lecture Notes in Computer Science, Vol. 2646), Herman Geuvers and Freek Wiedijk (Eds.). Springer,

148–161. doi:10.1007/3-540-39185-1_9

Léon Gondelman, Jonas Kastberg Hinrichsen, Mário Pereira, Amin Timany, and Lars Birkedal. 2023. Verifying Reliable

Network Components in a Distributed Separation Logic with Dependent Separation Protocols. Proc. ACM Program. Lang.
7, ICFP (2023), 847–877. doi:10.1145/3607859

Simon Oddershede Gregersen, Johan Bay, Amin Timany, and Lars Birkedal. 2021. Mechanized Logical Relations for

Termination-Insensitive Noninterference. Proc. ACM Program. Lang. 5, POPL (2021), 1–29. doi:10.1145/3434291

Dan Grossman, J. Gregory Morrisett, Trevor Jim, Michael W. Hicks, Yanling Wang, and James Cheney. 2002. Region-Based

Memory Management in Cyclone. In Proceedings of the 2002 ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI), Berlin, Germany, June 17-19, 2002, Jens Knoop and Laurie J. Hendren (Eds.). ACM, 282–293.

doi:10.1145/512529.512563

Jonas Kastberg Hinrichsen, Jesper Bengtson, and Robbert Krebbers. 2022. Actris 2.0: Asynchronous Session-Type Based

Reasoning in Separation Logic. Log. Methods Comput. Sci. 18, 2 (2022). doi:10.46298/lmcs-18(2:16)2022

Son Ho and Jonathan Protzenko. 2022. Aeneas: Rust verification by functional translation. Proc. ACM Program. Lang. 6,
ICFP (2022), 711–741. doi:10.1145/3547647

Aquinas Hobor, Andrew W. Appel, and Francesco Zappa Nardelli. 2008. Oracle Semantics for Concurrent Separation Logic.

In Programming Languages and Systems, 17th European Symposium on Programming, ESOP 2008, Held as Part of the
Joint European Conferences on Theory and Practice of Software, ETAPS 2008, Budapest, Hungary, March 29-April 6, 2008.
Proceedings (Lecture Notes in Computer Science, Vol. 4960), Sophia Drossopoulou (Ed.). Springer, 353–367. doi:10.1007/978-

3-540-78739-6_27

Bart Jacobs, Jan Smans, Pieter Philippaerts, Frédéric Vogels, Willem Penninckx, and Frank Piessens. 2011. VeriFast: A

Powerful, Sound, Predictable, Fast Verifier for C and Java. In NASA Formal Methods - Third International Symposium, NFM
2011, Pasadena, CA, USA, April 18-20, 2011. Proceedings (Lecture Notes in Computer Science, Vol. 6617), Mihaela Gheorghiu

Bobaru, Klaus Havelund, Gerard J. Holzmann, and Rajeev Joshi (Eds.). Springer, 41–55. doi:10.1007/978-3-642-20398-5_4

Koen Jacobs, Dominique Devriese, and Amin Timany. 2022. Purity of An ST Monad: Full Abstraction by Semantically Typed

Back-Translation. Proc. ACM Program. Lang. 6, OOPSLA1 (2022), 1–27. doi:10.1145/3527326
Ralf Jung. 2020. Understanding and Evolving the Rust Programming Language. Ph. D. Dissertation. Saarland University,

Saarbrücken, Germany. https://publikationen.sulb.uni-saarland.de/handle/20.500.11880/29647

Ralf Jung, Hoang-Hai Dang, Jeehoon Kang, and Derek Dreyer. 2020a. Stacked borrows: an aliasing model for Rust. Proc.
ACM Program. Lang. 4, POPL (2020), 41:1–41:32. doi:10.1145/3371109

Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer. 2018a. RustBelt: Securing the Foundations of the

Rust Programming Language. Proc. ACM Program. Lang. 2, POPL (2018), 66:1–66:34. doi:10.1145/3158154

Ralf Jung, Robbert Krebbers, Lars Birkedal, and Derek Dreyer. 2016. Higher-Order Ghost State. In Proceedings of the 21st ACM
SIGPLAN International Conference on Functional Programming, ICFP 2016, Nara, Japan, September 18-22, 2016, Jacques
Garrigue, Gabriele Keller, and Eijiro Sumii (Eds.). ACM, 256–269. doi:10.1145/2951913.2951943

Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Ales Bizjak, Lars Birkedal, and Derek Dreyer. 2018b. Iris from the

Ground Up: A Modular Foundation for Higher-Order Concurrent Separation Logic. J. Funct. Program. 28 (2018), e20.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 151. Publication date: June 2025.

https://doi.org/10.1007/978-3-031-17244-1_6
https://www.worldcat.org/oclc/01958445
https://doi.org/10.1145/3591278
https://doi.org/10.1145/3209108.3209174
https://doi.org/10.1145/3656422
https://doi.org/10.1145/3498689
https://doi.org/10.1145/277650.277748
https://doi.org/10.1007/3-540-39185-1_9
https://doi.org/10.1145/3607859
https://doi.org/10.1145/3434291
https://doi.org/10.1145/512529.512563
https://doi.org/10.46298/lmcs-18(2:16)2022
https://doi.org/10.1145/3547647
https://doi.org/10.1007/978-3-540-78739-6_27
https://doi.org/10.1007/978-3-540-78739-6_27
https://doi.org/10.1007/978-3-642-20398-5_4
https://doi.org/10.1145/3527326
https://publikationen.sulb.uni-saarland.de/handle/20.500.11880/29647
https://doi.org/10.1145/3371109
https://doi.org/10.1145/3158154
https://doi.org/10.1145/2951913.2951943

Nola: Later-Free Ghost State for Verifying Termination in Iris 151:25

doi:10.1017/S0956796818000151

Ralf Jung, Rodolphe Lepigre, Gaurav Parthasarathy, Marianna Rapoport, Amin Timany, Derek Dreyer, and Bart Jacobs.

2020b. The Future is Ours: Prophecy Variables in Separation Logic. Proc. ACM Program. Lang. 4, POPL (2020), 45:1–45:32.

doi:10.1145/3371113

Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron Turon, Lars Birkedal, and Derek Dreyer. 2015. Iris:

Monoids and Invariants as an Orthogonal Basis for Concurrent Reasoning. In Proceedings of the 42nd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2015, Mumbai, India, January 15-17, 2015,
Sriram K. Rajamani and David Walker (Eds.). ACM, 637–650. doi:10.1145/2676726.2676980

Robbert Krebbers, Ralf Jung, Ales Bizjak, Jacques-Henri Jourdan, Derek Dreyer, and Lars Birkedal. 2017. The Essence of

Higher-Order Concurrent Separation Logic. In Programming Languages and Systems - 26th European Symposium on
Programming, ESOP 2017, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2017,
Uppsala, Sweden, April 22-29, 2017, Proceedings (Lecture Notes in Computer Science, Vol. 10201), Hongseok Yang (Ed.).

Springer, 696–723. doi:10.1007/978-3-662-54434-1_26

Andrea Lattuada, Travis Hance, Chanhee Cho, Matthias Brun, Isitha Subasinghe, Yi Zhou, Jon Howell, Bryan Parno, and

Chris Hawblitzel. 2023. Verus: Verifying Rust Programs using Linear Ghost Types. Proc. ACM Program. Lang. 7, OOPSLA1
(2023), 286–315. doi:10.1145/3586037

Dongjae Lee, Minki Cho, Jinwoo Kim, Soonwon Moon, Youngju Song, and Chung-Kil Hur. 2023. Fair Operational Semantics.

Proc. ACM Program. Lang. 7, PLDI (2023), 811–834. doi:10.1145/3591253
Dongjae Lee, Janggun Lee, Taeyoung Yoon, Minki Cho, Jeehoon Kang, and Chung-Kil Hur. 2025. Lilo: A Higher-Order,

Relational Concurrent Separation Logic for Liveness. Proc. ACM Program. Lang. 9, OOPSLA1 (2025), 1267–1294. doi:10.
1145/3720525

Per Martin-Löf. 1982. Constructive Mathematics and Computer Programming. In Logic, Methodology and Philosophy of
Science VI, L. Jonathan Cohen, Jerzy Łoś, Helmut Pfeiffer, and Klaus-Peter Podewski (Eds.). Studies in Logic and the

Foundations of Mathematics, Vol. 104. Elsevier, 153–175. doi:10.1016/S0049-237X(09)70189-2

Nicholas D. Matsakis and Felix S. Klock, II. 2014. The Rust language. In Proceedings of the 2014 ACM SIGAda annual conference
on High integrity language technology, HILT 2014, Portland, Oregon, USA, October 18-21, 2014, Michael B. Feldman and

S. Tucker Taft (Eds.). ACM, 103–104. doi:10.1145/2663171.2663188

Yusuke Matsushita. 2019. CHC-based Program Verification Exploiting Ownership Types. Senior Thesis. University of Tokyo.

Yusuke Matsushita. 2021. Extensible Functional-Correctness Verification of Rust Programs by the Technique of Prophecy.
Master’s thesis. University of Tokyo.

Yusuke Matsushita. 2023. Non-Step-Indexed Separation Logic with Invariants and Rust-Style Borrows. Ph. D. Dissertation. The
University of Tokyo.

Yusuke Matsushita, Xavier Denis, Jacques-Henri Jourdan, and Derek Dreyer. 2022. RustHornBelt: A Semantic Foundation

for Functional Verification of Rust Programs with Unsafe Code. In PLDI ’22: 43rd ACM SIGPLAN International Conference
on Programming Language Design and Implementation, San Diego, CA, USA, June 13 - 17, 2022, Ranjit Jhala and Isil Dillig

(Eds.). ACM, 841–856. doi:10.1145/3519939.3523704

Yusuke Matsushita and Takeshi Tsukada. 2025. Artifact for “Nola: Later-Free Ghost State for Verifying Termination in Iris”.
doi:10.5281/zenodo.15190682

Yusuke Matsushita, Takeshi Tsukada, and Naoki Kobayashi. 2020. RustHorn: CHC-Based Verification for Rust Programs.

In Programming Languages and Systems - 29th European Symposium on Programming, ESOP 2020, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS 2020, Dublin, Ireland, April 25-30, 2020, Proceedings
(Lecture Notes in Computer Science, Vol. 12075), Peter Müller (Ed.). Springer, 484–514. doi:10.1007/978-3-030-44914-8_18

Yusuke Matsushita, Takeshi Tsukada, and Naoki Kobayashi. 2021. RustHorn: CHC-based Verification for Rust Programs.

ACM Trans. Program. Lang. Syst. 43, 4 (2021), 15:1–15:54. doi:10.1145/3462205
Glen Mével, Jacques-Henri Jourdan, and François Pottier. 2019. Time Credits and Time Receipts in Iris. In Programming

Languages and Systems - 28th European Symposium on Programming, ESOP 2019, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2019, Prague, Czech Republic, April 6-11, 2019, Proceedings (Lecture
Notes in Computer Science, Vol. 11423), Luís Caires (Ed.). Springer, 3–29. doi:10.1007/978-3-030-17184-1_1

Peter Müller, Malte Schwerhoff, and Alexander J. Summers. 2016. Viper: A Verification Infrastructure for Permission-Based

Reasoning. In Verification, Model Checking, and Abstract Interpretation - 17th International Conference, VMCAI 2016, St.
Petersburg, FL, USA, January 17-19, 2016. Proceedings (Lecture Notes in Computer Science, Vol. 9583), Barbara Jobstmann

and K. Rustan M. Leino (Eds.). Springer, 41–62. doi:10.1007/978-3-662-49122-5_2

Hiroshi Nakano. 2000. A Modality for Recursion. In 15th Annual IEEE Symposium on Logic in Computer Science, Santa
Barbara, California, USA, June 26-29, 2000. IEEE Computer Society, 255–266. doi:10.1109/LICS.2000.855774

Peter W. O’Hearn. 2004. Resources, Concurrency and Local Reasoning. In CONCUR 2004 - Concurrency Theory, 15th
International Conference, London, UK, August 31 - September 3, 2004, Proceedings (Lecture Notes in Computer Science,
Vol. 3170), Philippa Gardner and Nobuko Yoshida (Eds.). Springer, 49–67. doi:10.1007/978-3-540-28644-8_4

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 151. Publication date: June 2025.

https://doi.org/10.1017/S0956796818000151
https://doi.org/10.1145/3371113
https://doi.org/10.1145/2676726.2676980
https://doi.org/10.1007/978-3-662-54434-1_26
https://doi.org/10.1145/3586037
https://doi.org/10.1145/3591253
https://doi.org/10.1145/3720525
https://doi.org/10.1145/3720525
https://doi.org/10.1016/S0049-237X(09)70189-2
https://doi.org/10.1145/2663171.2663188
https://doi.org/10.1145/3519939.3523704
https://doi.org/10.5281/zenodo.15190682
https://doi.org/10.1007/978-3-030-44914-8_18
https://doi.org/10.1145/3462205
https://doi.org/10.1007/978-3-030-17184-1_1
https://doi.org/10.1007/978-3-662-49122-5_2
https://doi.org/10.1109/LICS.2000.855774
https://doi.org/10.1007/978-3-540-28644-8_4

151:26 Yusuke Matsushita and Takeshi Tsukada

Peter W. O’Hearn. 2019. Separation logic. Commun. ACM 62, 2 (2019), 86–95. doi:10.1145/3211968

Peter W. O’Hearn and David J. Pym. 1999. The Logic of Bunched Implications. Bull. Symb. Log. 5, 2 (1999), 215–244.

doi:10.2307/421090

Peter W. O’Hearn, John C. Reynolds, and Hongseok Yang. 2001. Local Reasoning about Programs that Alter Data Structures.

In Computer Science Logic, 15th International Workshop, CSL 2001. 10th Annual Conference of the EACSL, Paris, France,
September 10-13, 2001, Proceedings (Lecture Notes in Computer Science, Vol. 2142), Laurent Fribourg (Ed.). Springer, 1–19.
doi:10.1007/3-540-44802-0_1

John C. Reynolds. 2002. Separation Logic: A Logic for Shared Mutable Data Structures. In 17th IEEE Symposium on Logic
in Computer Science (LICS 2002), 22-25 July 2002, Copenhagen, Denmark, Proceedings. IEEE Computer Society, 55–74.

doi:10.1109/LICS.2002.1029817

Sarek Høverstad Skotåm. 2022. CreuSAT, Using Rust and Creusot to create the world’s fastest deductively verified SAT solver.
Master’s thesis. University of Oslo. https://www.duo.uio.no/handle/10852/96757

Youngju Song, Minki Cho, Dongjae Lee, Chung-Kil Hur, Michael Sammler, and Derek Dreyer. 2023. Conditional Contextual

Refinement. Proc. ACM Program. Lang. 7, POPL (2023), 1121–1151. doi:10.1145/3571232

Simon Spies, Lennard Gäher, Daniel Gratzer, Joseph Tassarotti, Robbert Krebbers, Derek Dreyer, and Lars Birkedal. 2021a.

Transfinite Iris: Resolving an Existential Dilemma of Step-Indexed Separation Logic. In PLDI ’21: 42nd ACM SIGPLAN
International Conference on Programming Language Design and Implementation, Virtual Event, Canada, June 20-25, 2021,
Stephen N. Freund and Eran Yahav (Eds.). ACM, 80–95. doi:10.1145/3453483.3454031

Simon Spies, Lennard Gäher, Joseph Tassarotti, Ralf Jung, Robbert Krebbers, Lars Birkedal, and Derek Dreyer. 2022.

Later Credits: Resourceful Reasoning for the Later Modality. Proc. ACM Program. Lang. 6, ICFP (2022), 283–311.

doi:10.1145/3547631

Simon Spies, Neel Krishnaswami, and Derek Dreyer. 2021b. Transfinite Step-indexing for Termination. Proc. ACM Program.
Lang. 5, POPL (2021), 1–29. doi:10.1145/3434294

Kasper Svendsen and Lars Birkedal. 2014. Impredicative Concurrent Abstract Predicates. In Programming Languages and
Systems - 23rd European Symposium on Programming, ESOP 2014, Held as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2014, Grenoble, France, April 5-13, 2014, Proceedings (Lecture Notes in Computer Science,
Vol. 8410), Zhong Shao (Ed.). Springer, 149–168. doi:10.1007/978-3-642-54833-8_9

Kasper Svendsen, Lars Birkedal, and Matthew J. Parkinson. 2013. Modular Reasoning about Separation of Concurrent Data

Structures. In Programming Languages and Systems - 22nd European Symposium on Programming, ESOP 2013, Held as
Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2013, Rome, Italy, March 16-24, 2013.
Proceedings (Lecture Notes in Computer Science, Vol. 7792), Matthias Felleisen and Philippa Gardner (Eds.). Springer,

169–188. doi:10.1007/978-3-642-37036-6_11

Nikhil Swamy, Aseem Rastogi, Aymeric Fromherz, Denis Merigoux, Danel Ahman, and Guido Martínez. 2020. SteelCore:

An Extensible Concurrent Separation Logic for Effectful Dependently Typed Programs. Proc. ACM Program. Lang. 4,
ICFP (2020), 121:1–121:30. doi:10.1145/3409003

Joseph Tassarotti, Ralf Jung, and Robert Harper. 2017. A Higher-Order Logic for Concurrent Termination-Preserving

Refinement. In Programming Languages and Systems - 26th European Symposium on Programming, ESOP 2017, Held as
Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2017, Uppsala, Sweden, April 22-29, 2017,
Proceedings (Lecture Notes in Computer Science, Vol. 10201), Hongseok Yang (Ed.). Springer, 909–936. doi:10.1007/978-3-

662-54434-1_34

Amin Timany, Simon Oddershede Gregersen, Léo Stefanesco, Jonas Kastberg Hinrichsen, Léon Gondelman, Abel Nieto, and

Lars Birkedal. 2024a. Trillium: Higher-Order Concurrent and Distributed Separation Logic for Intensional Refinement.

Proc. ACM Program. Lang. 8, POPL (2024), 241–272. doi:10.1145/3632851

Amin Timany, Robbert Krebbers, Derek Dreyer, and Lars Birkedal. 2024b. A Logical Approach to Type Soundness. J. ACM
71, 6 (2024), 40:1–40:75. doi:10.1145/3676954

Amin Timany, Léo Stefanesco, Morten Krogh-Jespersen, and Lars Birkedal. 2018. A Logical Relation for Monadic Encapsu-

lation of State: Proving Contextual Equivalences in the Presence of runST. Proc. ACM Program. Lang. 2, POPL (2018),

64:1–64:28. doi:10.1145/3158152

Mads Tofte and Jean-Pierre Talpin. 1994. Implementation of the Typed Call-by-Value lambda-Calculus using a Stack of

Regions. In Conference Record of POPL’94: 21st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
Portland, Oregon, USA, January 17-21, 1994, Hans-Juergen Boehm, Bernard Lang, and Daniel M. Yellin (Eds.). ACM Press,

188–201. doi:10.1145/174675.177855

Mads Tofte and Jean-Pierre Talpin. 1997. Region-based Memory Management. Inf. Comput. 132, 2 (1997), 109–176.

doi:10.1006/INCO.1996.2613

Sebastian Ullrich. 2016. Simple Verification of Rust Programs via Functional Purification. Master’s thesis. Karlsruhe Institute

of Technology.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 151. Publication date: June 2025.

https://doi.org/10.1145/3211968
https://doi.org/10.2307/421090
https://doi.org/10.1007/3-540-44802-0_1
https://doi.org/10.1109/LICS.2002.1029817
https://www.duo.uio.no/handle/10852/96757
https://doi.org/10.1145/3571232
https://doi.org/10.1145/3453483.3454031
https://doi.org/10.1145/3547631
https://doi.org/10.1145/3434294
https://doi.org/10.1007/978-3-642-54833-8_9
https://doi.org/10.1007/978-3-642-37036-6_11
https://doi.org/10.1145/3409003
https://doi.org/10.1007/978-3-662-54434-1_34
https://doi.org/10.1007/978-3-662-54434-1_34
https://doi.org/10.1145/3632851
https://doi.org/10.1145/3676954
https://doi.org/10.1145/3158152
https://doi.org/10.1145/174675.177855
https://doi.org/10.1006/INCO.1996.2613

Nola: Later-Free Ghost State for Verifying Termination in Iris 151:27

Viktor Vafeiadis. 2008. Modular fine-grained concurrency verification. Ph. D. Dissertation. University of Cambridge, UK.

https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.612221

Joshua Yanovski, Hoang-Hai Dang, Ralf Jung, and Derek Dreyer. 2021. GhostCell: Separating Permissions from Data in Rust.

Proc. ACM Program. Lang. 5, ICFP (2021), 1–30. doi:10.1145/3473597

Received 2024-11-15; accepted 2025-03-06

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 151. Publication date: June 2025.

https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.612221
https://doi.org/10.1145/3473597

	Abstract
	1 Introduction
	1.1 Existing Techniques and Challenges
	1.2 Our Solution, Nola

	2 Nola's Later-Free Invariants
	2.1 Interface of Nola's Invariants
	2.2 Constructing the SL Formulas and Their Semantics
	2.3 Verification Examples

	3 Model of Nola's Invariants
	4 Expressivity
	5 Nola's Later-Free Borrows
	5.1 Overview
	5.2 Nola's Later-Free Borrows

	6 Semantic Alteration by Magic Derivability
	7 RustHalt: A Semantic Foundation for Total Correctness Verification of Rust Programs
	8 Mechanization
	9 Related Work
	Acknowledgments
	References

