
RapunSL: UntanglingQuantum Computing with Separation,
Linear Combination and Mixing

YUSUKE MATSUSHITA∗, Kyoto University, Japan
KENGO HIRATA∗, University of Edinburgh, United Kingdom and Kyoto University, Japan
RYO WAKIZAKA, Kyoto University, Japan
EMANUELE D’OSUALDO, University of Konstanz, Germany

Quantum Separation Logic (QSL) has been proposed as an effective tool to improve the scalability of deductive
reasoning for quantum programs. In QSL, separation is interpreted as disentanglement, and the frame rule
brings a notion of entanglement-local specification (one that only talks about the qubits entangled with those
acted upon by the program). In this paper, we identify two notions of locality unique to the quantum domain,
and we construct a novel quantum separation logic, RapunSL, which is able to soundly reduce reasoning
about superposition states to reasoning about pure states (basis-locality), and reasoning about mixed states
arising from measurement to reasoning about pure states (outcome-locality). To do so, we introduce two
connectives, linear combination and mixing, which together with separation provide a dramatic improvement
in the scalability of reasoning, as we demonstrate on a series of challenging case studies.

CCS Concepts: • Theory of computation→ Separation logic; Quantum computation theory.

Additional Key Words and Phrases: quantum separation logic, entanglement, quantum program verification

ACM Reference Format:
Yusuke Matsushita, Kengo Hirata, Ryo Wakizaka, and Emanuele D’Osualdo. 2026. RapunSL: Untangling
Quantum Computing with Separation, Linear Combination and Mixing. Proc. ACM Program. Lang. 10, POPL,
Article 6 (January 2026), 50 pages. https://doi.org/10.1145/3776648

1 Introduction
Separation logic [O’Hearn and Pym 1999] represents a foundational breakthrough in the scalability
of deductive verification methods. By introducing a resource-based form of local reasoning, separa-
tion logic allows program specifications to describe behaviour solely in terms of the resources a
program fragment accesses, without reference to the rest of the program state [Ishtiaq and O’Hearn
2001; O’Hearn et al. 2001; Reynolds 2002]. This is formalized through the frame rule (hoare-frame
in Fig. 1), which guarantees that verified properties of a program fragment remain valid when
executed in a larger context, provided the context’s resources are separate. By giving different
interpretations to the notion of “separable resources”, separation logic has been shown to support
a wide array of different computational phenomena, from the heap to concurrency [O’Hearn 2007;
Brookes 2007; Brookes and O’Hearn 2016], to probabilistic non-determinism [Barthe et al. 2019a;
Bao et al. 2021; Li et al. 2023, 2024a; Bao et al. 2025].
Recently, the separation logic paradigm has been applied to quantum computation [Zhou et al.

2021; Le et al. 2022; Deng et al. 2024; Su et al. 2024]. In the quantum domain, separation has been
∗ The first two authors contributed equally to this work.

Authors’ Contact Information: Yusuke Matsushita, Kyoto University, Kyoto, Japan, ymat@fos.kuis.kyoto-u.ac.jp; Kengo
Hirata, University of Edinburgh, Edinburgh, United Kingdom and Kyoto University, Kyoto, Japan, k.hirata@sms.ed.ac.uk;
Ryo Wakizaka, Kyoto University, Kyoto, Japan, wakizaka@fos.kuis.kyoto-u.ac.jp; Emanuele D’Osualdo, University of
Konstanz, Konstanz, Germany, emanuele.dosualdo@uni-konstanz.de.

© 2026 Copyright held by the owner/author(s).
This is the author’s version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version
of Record was published in Proceedings of the ACM on Programming Languages, https://doi.org/10.1145/3776648.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 6. Publication date: January 2026.

https://orcid.org/0000-0002-5208-3106
https://orcid.org/0009-0005-4416-2655
https://orcid.org/0000-0001-8762-9335
https://orcid.org/0000-0002-9179-5827
https://doi.org/10.1145/3776648
https://orcid.org/0000-0002-5208-3106
https://orcid.org/0009-0005-4416-2655
https://orcid.org/0009-0005-4416-2655
https://orcid.org/0000-0001-8762-9335
https://orcid.org/0000-0002-9179-5827
https://doi.org/10.1145/3776648

6:2 Yusuke Matsushita, Kengo Hirata, Ryo Wakizaka, and Emanuele D’Osualdo

hoare-frame{
𝑃
}
𝐶

{
𝑄
}{

𝑃 ∗ 𝑅
}
𝐶

{
𝑄 ∗ 𝑅

}
hoare-sum{
𝑃
}
𝐶

{
𝑄
} {

𝑃 ′
}
𝐶

{
𝑄 ′

}{
𝑃 + 𝑃 ′

}
𝐶

{
𝑄 +𝑄 ′

}
hoare-mix{
𝑃
}
𝐶

{
𝑄
} {

𝑃 ′
}
𝐶

{
𝑄 ′

}{
𝑃 0⊕ι1 𝑃 ′

}
𝐶

{
𝑄 0⊕ι1 𝑄 ′

}
Fig. 1. The three rules of RapunSL embodying the three locality principles.

interpreted as disentanglement: roughly speaking, 𝑃 ∗𝑄 describes a configuration where the qubits
described by 𝑃 are not entangled with the ones in𝑄 . Since a quantum program acting on some qubits
x̄would not affect any disentangled qubits ȳ, the frame rule is valid, improving the modularity of rea-
soning. For example, in proving

{
x ↦→ |𝜓 ⟩ ∗ y ↦→ |𝜙⟩

}
𝑈 [𝑥]

{
x ↦→ 𝑈 |𝜓 ⟩ ∗ y ↦→ |𝜙⟩

}
one can apply

hoare-frame framing y ↦→ |𝜙⟩ and reduce reasoning to the simpler
{
x ↦→ |𝜓 ⟩

}
𝑈 [𝑥]

{
x ↦→ 𝑈 |𝜓 ⟩

}
as one would do in an informal proof. This allows one to focus only on the relevant state for a
proof of a component, and still reuse the specification when used in larger contexts. We dub this
entanglement-locality, as it allows one to focus only on the entangled part.
The starting observation of this paper is that quantum computation adds two unique ways

to add context to some computation, superposition and measurement, and each of them grants a
fundamentally new notion of locality which cannot be captured by separation alone.
Basis-locality. A qubit’s state is, in general, a superposition 𝛼 |0⟩ + 𝛽 |1⟩ of the two classical

states |0⟩ and |1⟩ (the basis vectors). Quantum gates, the basic building blocks of quantum computa-
tion, act on qubits as unitary operators𝑈 : their effect on a state 𝛼 |0⟩ + 𝛽 |1⟩ is entirely determined
by their effect on |0⟩ and |1⟩, i.e.,𝑈 (𝛼 |0⟩ + 𝛽 |1⟩) = 𝛼 (𝑈 |0⟩) + 𝛽 (𝑈 |1⟩). This suggests, in addition
to disentanglement, a second notion of locality, which we call basis-locality, which would allow us
to focus on the effect of a program on the basis states, and extrapolate its effect to a superposition.
Outcome-locality. In the quantum world, the act of measuring is a delicate affair: measuring a

qubit has the very global effect of making its superposition state probabilistically collapse to a
classical state. The state after a measurement can thus be described using a so-called mixed state,
i.e., a probabilistic ensemble of pure states. The effect of a program continuing after a measurement,
however, would be entirely determined by its effect on each of the possible outcomes. This suggests
a third notion of locality, which we call outcome-locality, where a specification on (potentially pure)
states can be lifted to a specification on mixed states.
Unfortunately, none of the quantum logics in the literature has achieved all three locality

principles within one logic. The quantum separation logics of Zhou et al. [2021] and Le et al.
[2022] support only entanglement-locality. Recent work by Deng et al. [2024] additionally supports
outcome-locality, but not basis-locality. This is not for lack of imagination: these logics are built on
models that are fundamentally incompatible with basis-locality or outcome-locality.

What we set out to find in this paper is a way to soundly enable all these three locality principles
in a program logic for quantum computation, and to articulate the patterns of reasoning they
unlock. Due to the extremely subtle interaction of all these three mechanisms—(dis)entanglement,
superposition, and measurement—the natural models of assertions all fail. Our solution starts from
an analysis of such failures. We identify two sources of incompatibility with the three locality
principles in the models used in the literature. The first pertains to the level of abstraction of
assertions on pure states. The logics of Zhou et al. [2021] and Ying [2012] use global-phase-
insensitive assertions, which is natural considering that measurements are insensitive to global-
phase changes. This choice, however, impedes basis-locality: the sum of vectors needed to form a
superposition is only meaningful when the global phase is tracked.
The second, and more serious, incompatibility involves the treatment of measurements. The

issue is that measurements do not fulfil, strictly speaking, the basis-locality principle, as their

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 6. Publication date: January 2026.

RapunSL: UntanglingQuantum Computing with Separation, Linear Combination and Mixing 6:3

effect is not fully determined by their effect on basis states. On a classical state, a measurement
is a no-op. However, when applied to a state in a superposition, the measurement collapses it,
probabilistically, to a classical state. On the face of it, this seems to suggest that there is a fundamental
incompatibility between measurements and basis-locality. In fact, this is indeed the case in the
(global-phase-sensitive) model of Le et al. [2022].

The main contribution of this paper is to show that this apparent conflict can be resolved by
introducing a new quantum separation logic called RapunSL. We identify the handling of mixed
states as the source of the conflict: In the logic of Le et al. [2022], assertions talk, just like in any
traditional separation logic, about single pure states, so specifications can only assert facts that apply
to every outcome. In RapunSL, assertions are global-phase-sensitive and predicate over the whole
mixed state at once. More precisely, RapunSL includes three logical connectives: separation (𝑃 ∗𝑄)
representing disentanglement, sum (𝑃 +𝑄) representing superposition, andmixing (𝑃 0⊕ι1 𝑄) joining
two outcomes into a mixed state. The conflict is resolved because in our model, a measurement on
a classical state still gives us a mixed state where one outcome is a degenerate zero-probability
state, and is therefore distinguishable from a no-op. The three locality principles are then embodied
by the three rules of Fig. 1: hoare-frame for entanglement-locality, hoare-sum for basis-locality,
and hoare-mix for outcome-locality.

Contributions. The main contributions of this paper are:
(1) A new assertion language to describe mixed states using separation, sum and mixing, and its

supporting model.
(2) A thorough study of the rich interactions between the new connectives. In particular, we

study the distributivity and interchange properties that hold in our model.
(3) A sound program logic, RapunSL, supporting all three locality principles.
(4) Case studies evaluating how effective local reasoning is in RapunSL, and illustrating the new

proof patterns available in it.

Outline. We start with an informal overview § 2 explaining the key ideas. Then, after setting
things up in § 3, we formalize our logic and prove its soundness in § 4. We present case studies in
§ 5 and discuss key topics in § 6. Finally, § 7 reviews related work and § 8 concludes with future
work. All omitted details and proofs can be found in the Appendix.

2 Overview of RapunSL
In this section, we highlight the key ideas unlocking the development of RapunSL.

2.1 Handling Superposition, Compositionally
To motivate the problem with superposition, imagine we are given the task of designing a quantum
circuit 𝐶 that should implement some Boolean 1-to-1 function 𝑓 : {0, 1}𝑛 → {0, 1}𝑛 of 𝑛 qubits x̄,
using basic quantum gates, e.g., Toffoli gates. Sometimes, some auxiliary qubits are necessary
to do so. A well-understood technique for managing auxiliary state is to employ so-called dirty
qubits [Häner et al. 2017; Gidney 2018; Nie et al. 2024]: a qubit tmp that serves as auxiliary workspace,
and is not assumed to be in any particular state (hence “dirty”). As long as tmp is returned to its
original state once the computation is done, even if it was in a superimposed state with other qubits
in the context, the only state change would be in x̄.

Informally, one would reason about 𝐶 as follows. Since 𝐶 is implemented with linear operators,
it is itself linear. Therefore, it is sufficient to analyse its behaviour on classical states for x̄ and tmp,
prove that x̄ is correctly transformed as dictated by 𝑓 , and that tmp is restored to its input state.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 6. Publication date: January 2026.

6:4 Yusuke Matsushita, Kengo Hirata, Ryo Wakizaka, and Emanuele D’Osualdo

Then, by linearity, any state in a superposition would simply see the operator𝑈𝑓 (the unitary lifting
of 𝑓) applied to x̄, and the rest of the qubits left untouched.
More formally, the argument would start by proving the correctness of 𝐶 on a classical state,

obtaining the following triple:

∀𝑏 ∈ {0, 1}𝑛 .∀𝑡 ∈ {0, 1}.
{
x̄ ↦→ |𝑏⟩ ∗ tmp ↦→ |𝑡⟩

}
𝐶

{
x̄ ↦→ |𝑓 (𝑏)⟩ ∗ tmp ↦→ |𝑡⟩

}
(1)

The challenge would then be to reuse the triple in a context where there are some other qubits ȳ,
and all the qubits are in some arbitrary superimposed state |𝜓 ⟩, i.e., to deduce from (1) the triple:{

(x̄, tmp, ȳ) ↦→ |𝜙⟩
}
𝐶

{
(x̄, tmp, ȳ) ↦→ (𝑈𝑓 ⊗ idtmp,ȳ) |𝜙⟩

}
(2)

To perform such a deduction, RapunSL provides two rules encoding the linearity argument:
hoare-sum{
𝑃
}
𝐶

{
𝑄
} {

𝑃 ′
}
𝐶

{
𝑄 ′

}{
𝑃 + 𝑃 ′

}
𝐶

{
𝑄 +𝑄 ′

}
hoare-scale{

𝑃
}
𝐶

{
𝑄
}{

𝛼 𝑃
}
𝐶

{
𝛼 𝑄

}
The rules use the logical connectives 𝑃 + 𝑃 ′ and 𝛼 𝑃 representing the sum and scaling of quantum
states respectively, i.e., RapunSL defines them so that (x ↦→ |𝜓 ⟩) + (x ↦→ |𝜙⟩) ⊣⊢ x ↦→ (|𝜓 ⟩ + |𝜙⟩)
and 𝛼 (x ↦→ |𝜓 ⟩) ⊣⊢ x ↦→ 𝛼 |𝜓 ⟩ are valid.12
Using such rules, it is possible to prove (2) by first seeing |𝜓 ⟩ as an explicit superposition of

classical states: |𝜓 ⟩ =∑
𝑏,𝑡,𝑐 𝛼𝑏,𝑡,𝑐 |𝑏𝑡𝑐⟩. Then by hoare-sum and hoare-scale, we reduce the goal

to a triple on a classical state; the state of ȳ can now simply be framed to reduce the problem to our
original (1). Note how the framing of ȳ is only possible after having applied hoare-sum: in the
original state, x̄, tmp and ȳ are arbitrarily entangled.

Perhaps surprisingly, no logic in the literature can perform the intuitive steps above. Prior logics,
in fact, cannot soundly admit hoare-sum. The logics of Zhou et al. [2021] and Su et al. [2024] are
incompatible with it because they adopt a global-phase-insensitive semantics for their assertions
(e.g., by representing states as a density matrix). This choice seems justified as no measurement can
distinguish between two states that differ only in the global phase. This is, however, fundamentally
incompatible with hoare-sum. For example, in a global-phase-insensitive logic, the two states
x ↦→ |1⟩ and x ↦→ − |1⟩ are indistinguishable (i.e., x ↦→ |1⟩ ⊣⊢ x ↦→ − |1⟩). If sum were to preserve
entailment here, we could derive x ↦→ 0 ⊢ (x ↦→ ½ |1⟩ + x ↦→ −½ |1⟩) ⊢ (x ↦→ ½ |1⟩ + x ↦→ ½ |1⟩) ⊢
x ↦→ |1⟩—a meaningful state out of an impossible probability-zero state.

Retaining the global-phase information in RapunSL allows for the compositional treatment
of some deductions, like the ones using linearity. The logic of Le et al. [2022] is the only other
global-phase-sensitive quantum separation logic we are aware of. This logic is also fundamentally
incompatible with hoare-sum because of its model of measurements. The main contribution of Ra-
punSL is a newmodel which can support unrestricted applications of hoare-sum and measurements
in the same logic.

2.2 The Main Challenge: Handling Measurements Soundly
The fundamental issue with measurement is that it is not a unitary operator. Specifically, it collapses
a superposition state

∑
𝑖 𝛼𝑖 |𝑠𝑖⟩ into the classical state |𝑠𝑖⟩ with probability |𝛼𝑖 |2. As a consequence,

one would think the following innocent-looking triples should be valid:{
x ↦→ |0⟩

}
MZ [x]

{
x ↦→ |0⟩

} {
x ↦→ |1⟩

}
MZ [x]

{
x ↦→ |1⟩

}
(3)

1 We use ⊢ for entailment, and ⊣⊢ for bidirectional entailment, i.e., logical equivalence.
2 Interestingly, we can derive hoare-scale from the frame rule hoare-frame, because 𝛼 𝑃 can be represented as (() ↦→

𝛼) ∗ 𝑃 , where () ↦→ 𝛼 is a zero-qubit state of a one-dimensional vector (i.e., a scalar) 𝛼 .

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 6. Publication date: January 2026.

RapunSL: UntanglingQuantum Computing with Separation, Linear Combination and Mixing 6:5

The triples say that an already classical state cannot be “collapsed” further by measuring it. Re-
markably, however, any logic that would admit (3) is fundamentally incompatible with hoare-sum.
This is because its application to (3) would yield the invalid triple{

x ↦→ (𝛼 |0⟩ + 𝛽 |1⟩)
}
MZ [x]

{
x ↦→ (𝛼 |0⟩ + 𝛽 |1⟩)

}
(4)

where no collapse of the superposition happens at all. In fact, the logic of Le et al. [2022] would
admit (3), and thus cannot support the local reasoning afforded by hoare-sum.

At first sight, this might seem an insurmountable obstacle: the hoare-sum rule seems to imply
every program is linear, but measurement is not. Is our objective even achievable?
The key insight behind the solution we provide with RapunSLis that the real culprit is the

handling of mixed states, i.e., probabilistic mixtures of pure quantum states (the outcomes of
measurement). In a logic like Le et al. [2022]’s, just as in standard separation logic, assertions talk
about one possible outcome at a time. For example, the most accurate representation of the mixture
of two outcomes 𝑃 and 𝑄 is 𝑃 ∨𝑄 , an assertion that does not fully describe the mixed state, but
only an over-approximation of the possible outcomes.

As a first step towards a solution, in RapunSL, we move to assertions that can predicate over the
whole mixed state. To handle mixed states compositionally, we introduce a new connective 𝑃 0⊕ι1 𝑄 ,
called tagged mixing, which represents the mixed state resulting from running a measurement
tagged with ι and with two outcomes 0 and 1.3 Under this interpretation, the triples (3) become
invalid: in RapunSL they would assert that the state resulting from a measurement is equivalent to
one where no measurement was taken. A valid rule for measurement in RapunSL is:4

hoare-mz{
x ↦→ (𝛼 |0⟩ + 𝛽 |1⟩)

}ι
MιZ [x]

{
(x ↦→ 𝛼 |0⟩) 0⊕ι1 (x ↦→ 𝛽 |1⟩)

}
The rule states that from a state where x is in a superposition of states |0⟩ and |1⟩ with coefficients
𝛼 and 𝛽 , respectively, measuring x gives us a mixed state with two outcomes: one where the state
of x collapsed to the classical state |0⟩ and one where it collapsed to |1⟩. More precisely, the single
outcomes in the postcondition retain their coefficient (i.e., we do not normalize the states) so that
we can read off the probabilities of each outcome (as the squared norm of the coefficient).

The crucial change induced by moving to assertions over mixed states is that now the 𝑃 +𝑄
connective is not just given the meaning of “linear combination” but of “outcome-wise linear com-
bination”. This is essentially what makes hoare-sum sound in the presence of measurement: it no
longer states that the program is linear, but linear on each outcome (i.e., once all the measurement’s
effects have been factored out). This is summarized in the following interchange rules, which are
validated by RapunSL’s model:

mix-sum
(𝑃0 0⊕ι1 𝑃1) + (𝑄0 0⊕ι1 𝑄1) ⊣⊢ (𝑃0 +𝑄0) 0⊕ι1 (𝑃1 +𝑄1)

mix-scale
𝛼 (𝑃0 0⊕ι1 𝑃1) ⊣⊢ (𝛼 𝑃0) 0⊕ι1 (𝛼 𝑃1)

Now we can resolve the apparent conflict between measurement and sum we started with: we
can derive the specification hoare-mz of the behaviour of a measurement on a superposition state,
from a specification of its behaviour on classical states. In RapunSL, the valid rules for measuring a
classical state are: {

x ↦→ |0⟩
}ι

MιZ [x]
{
(x ↦→ |0⟩) 0⊕ι1 (x ↦→ 0)

}
(5){

x ↦→ |1⟩
}ι

MιZ [x]
{
(x ↦→ 0) 0⊕ι1 (x ↦→ |1⟩)

}
(6)

3 Deng et al. [2024]’s logic has a similar connective ⊕, but their model is fundamentally different from ours and incompatible
with basis-locality. This will be discussed in more detail later in § 7.

4 The superscript ι of the precondition means that the ownership of the variable ι is required. See § 4.4 for the details.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 6. Publication date: January 2026.

6:6 Yusuke Matsushita, Kengo Hirata, Ryo Wakizaka, and Emanuele D’Osualdo

Crucially, for these to be valid in our model, they have to include in the postcondition an explicit
tagged mix connective, with only one meaningful branch and one probability-zero outcome (the
measurement that cannot materialize) represented as the zero-norm state x ↦→ 0. In fact, we can
now derive hoare-mz from (5) and (6):{

x ↦→ |0⟩
}ι

MιZ [x]
{
x ↦→ |0⟩ 0⊕ι1 x ↦→ 0

}{
x ↦→ 𝛼 |0⟩

}ι
MιZ [x]

{
x ↦→ 𝛼 |0⟩ 0⊕ι1 x ↦→ 0

} (10)

{
x ↦→ |1⟩

}ι
MιZ [x]

{
x ↦→ 0 0⊕ι1 x ↦→ 𝛼 |1⟩

}{
x ↦→ 𝛽 |1⟩

}ι
MιZ [x]

{
x ↦→ 0 0⊕ι1 x ↦→ 𝛽 |1⟩

} (9){
x ↦→ (𝛼 |0⟩ + 𝛽 |1⟩)

}ι
MιZ [x]

{
(x ↦→ 𝛼 |0⟩ 0⊕ι1 x ↦→ 0) + (x ↦→ 0 0⊕ι1 x ↦→ 𝛽 |1⟩)

} (8){
x ↦→ (𝛼 |0⟩ + 𝛽 |1⟩)

}ι
MιZ [x]

{
x ↦→ 𝛼 |0⟩ 0⊕ι1 x ↦→ 𝛽 |1⟩

} (7)

We start by applying hoare-scale and mix-scale to (5) and (6) in steps (9) and (10), to introduce
the coefficients for each (classical) state. Then, in step (8), we apply hoare-sum to combine the
states in a superposition; this gives a postcondition which is the sum of two mixed states. In the
final step (7), we use mix-sum to obtain a mixed state of sums, as required; note how summing a
state with the impossible outcome x ↦→ 0 leaves the state unchanged.

2.3 The Three Layers of Locality
As we described, RapunSL supports three locality principles at the same time, displayed in Fig. 1.
That is, in a mixed state, we can reason on a per-outcome basis (hoare-mix); in a superposition
state, we can reason on the classical basis states (hoare-sum); and in a state where some qubits
are disentangled, we can focus on the relevant ones and ignore the others (hoare-frame). Given
that a proof in RapunSL will inevitably involve a combination of all three layers, it is crucial to
study the interaction between the three constructs of mixing, sum and separation. Our model is
carefully constructed to enjoy a number of distributivity/interchange rules that allow for flexible
combinations of the connectives, which we review next.

A first illustration of the flexibility of RapunSL was already presented in mix-sum, which shows
an interchange law between mixing and sum. This allows for handling superposition and mixing
in any order without losing information. A similar interchange law holds for mixings arising from
two consecutive measurements on different qubits.

mix-mix
(𝑃00 0⊕ι1 𝑃01) 0⊕κ1 (𝑃10 0⊕ι1 𝑃11) ⊣⊢ (𝑃00 0⊕κ1 𝑃10) 0⊕ι1 (𝑃01 0⊕κ1 𝑃11)

The mix-mix rule says that RapunSL’s model is insensitive to the order in which measurements are
taken, showing that the 0⊕ι1 connective is not simply a representation of the program’smeasurements
in the assertions, but a genuine compositional abstraction over them.

Finally, separation is also well-behaved concerning superposition and mixing:

sum-frame
(𝑃 +𝑄) ∗ 𝑅 ⊢ (𝑃 ∗ 𝑅) + (𝑄 ∗ 𝑅)

mix-frame
(𝑃 0⊕ι1 𝑄) ∗ 𝑅 ⊢ (𝑃 ∗ 𝑅) 0⊕ι1 (𝑄 ∗ 𝑅)

Thanks to mix-frame, adding a disentangled frame to a mixed state does not disallow per-outcome
reasoning. As we explain next, the reverse direction of mix-frame is crucial for the scalability of
reasoning in RapunSL.

2.4 Abstraction
As we argued, we can only hope to have a sound logic if every measurement introduces a mixing
connective in the postcondition. Without care, this can induce an exponential growth in the
outcomes to be considered. The key tool provided by RapunSL to control this complexity is the

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 6. Publication date: January 2026.

RapunSL: UntanglingQuantum Computing with Separation, Linear Combination and Mixing 6:7

x

z

CNOT

|0⟩

x Z MZZ
Z

y MXX
H

z X

mCNOT

Fig. 2. A CNOT gate (left) and its encoding mCNOT using measurements (right).

reverse direction of the mix-frame rule:

mix-unframe
𝑅 : precise

(𝑃 ∗ 𝑅) 0⊕ι1 (𝑄 ∗ 𝑅) ⊢ (𝑃 0⊕ι1 𝑄) ∗ 𝑅

The mix-unframe rule says that it is possible (under a technical condition on 𝑅) to factor out
the portions of state that are common to multiple outcomes into a single frame. This allows any
reasoning that only depends on 𝑅 to be done once, and for the remaining information to be framed
around the reasoning.
To show more concretely the positive effect of this rule on the abstraction capabilities of Ra-

punSL, let us consider a specific example which we treat in full detail in § 5.3. In certain quantum
architectures designed to support fault tolerance [Horsman et al. 2012], the implementation of
basic 2-qubit gates, such as CNOT (a.k.a. CX), can be improved by implementing their functionality
through a combination of 1-qubit unitary gates and 2-qubit measurements [Fowler and Gidney
2019]. In Fig. 2, we show the schema of such a circuit called mCNOT, encoding a CNOT gate. The
details are explained in § 5.3, but for our purposes, what is important is that themCNOT encodes a
CNOT between x and z, using an auxiliary (ancilla) qubit y initialized with state |0⟩, and that the
circuit contains several measurements.
Although the mCNOT circuit is designed to be morally equivalent to the CNOT, formally, the

two have important differences: mCNOT requires an extra qubit, and the measurements produce a
mixed state. Without care, using mCNOT in compositional reasoning instead of the CNOT may
cause incorrect results. However, if the circuit usingmCNOT is not making use of these differences,
reasoning about the overall correctness should proceed essentially as if we used CNOT instead of
mCNOT. In RapunSL, we can replicate this rough argument fully formally.

The idea is that mCNOT can be proven to satisfy a specification of the form:5

∀ |𝜓 ⟩ .
{
(x, z) ↦→ |𝜓 ⟩ ∗ y ↦→ |0⟩

}
mCNOT[x, y, z]

{
(x, z) ↦→ CX |𝜓 ⟩ ∗ 𝑃⊕

}
where 𝑃⊕ contains mixing connectives 0⊕1 introduced by the measurements and (per-outcome)
information about the state of y and the global phase. The rest of the postcondition asserts that
the effect on the x and z qubits is the same as the effect of a CNOT gate. The ability to group the
measurement “side effects” into 𝑃⊕ is given by mix-unframe. This grouping has two nice effects.
First, it allows any user of the specification to lift reasoning that holds for CNOT to reasoning
that holds for mCNOT by framing 𝑃⊕ . Second, when lifting reasoning in this way, framing 𝑃⊕
safeguards against possible unsoundness, i.e., if a step applies to CNOT but not to mCNOT, the
frame 𝑃⊕ prevents lifting the result to mCNOT.

5 To be precise, the precondition has the superscript of the classical variables used for storing the results of measurements.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 6. Publication date: January 2026.

6:8 Yusuke Matsushita, Kengo Hirata, Ryo Wakizaka, and Emanuele D’Osualdo

We also note that, although we adopt a global-phase-sensitive logic, we do not preclude users
from employing density matrices when a more compact representation is desired. Density matrices
can be encoded within our logic, thus users can switch to use them to have smaller state descriptions;
however, this comes at the cost of reduced modularity. We will see the details in § 6.

2.5 Summary
In summary, we constructed a new logic, RapunSL, that is able to achieve modular reasoning across
three ways of combining quantum programs: by adding a disentangled state via separation, by
superposition via sum, and by adding measurements via mixing. In the remainder of the paper,
we provide the model and rules of RapunSL, and evaluate it through a series of challenging case
studies. The omitted details and full proofs of soundness can be found in §A.

3 Preliminaries and Program Language
3.1 A Primer onQuantum Computing
The basic unit of data in quantum computing is the qubit, which can take not only the classical
states |0⟩ and |1⟩, but also a superposition of them, that is, a linear combination of the two states
|𝜓 ⟩ = 𝛼 |0⟩ + 𝛽 |1⟩ ∈ C2. Here, the squared norm ∥|𝜓 ⟩∥2 = |𝛼 |2 + |𝛽 |2 represents the probability of
that state. More generally, the pure state of a system of 𝑛 qubits is a vector in a 2𝑛-dimensional
Hilbert space. For example, the pure states of two qubits are described by vectors of the form
𝛼 |00⟩ + 𝛽 |01⟩ +𝛾 |10⟩ + 𝛿 |11⟩. The states |𝑏⟩ with 𝑏 ∈ B𝑛 are the basis states. If two spacesH0 and
H1 represent the states of quantum data x and y respectively, a state of the composite system (x, y)
is called separated or disentangled if it can be represented as |𝜓0⟩ ⊗ |𝜓1⟩, i.e., there is no correlation
between the two data. If not, then the state is called entangled. An example of an entangled state is
the Bell state |Bell⟩ = (|00⟩ + |11⟩)/

√
2.

Quantum states that differ only in a global phase 𝛼 ∈ C, i.e., |𝜓 ⟩ and 𝛼 |𝜓 ⟩, are physically
indistinguishable: no measurement can detect the difference. Only relative phase—the difference in
phase between coefficients of the basis states—can be measured.
Quantum computing is performed by quantum gates. A quantum gate on 𝑛 qubits is a unitary

operator (or matrix) on the vector space (C2)⊗𝑛 . In particular, quantum gates are linear, and thus
their effect is determined by their effect on basis states: 𝑈 (∑𝑖 𝛼𝑖 |𝑏𝑖⟩) =

∑
𝑖 𝛼𝑖𝑈 |𝑏𝑖⟩. For example,

the X gate (on a single qubit) flips |0⟩ to |1⟩ and vice versa; the Z gate flips the sign of |1⟩; the
CX = CNOT gate (on two qubits) maps |𝑎𝑏⟩ to |𝑎, 𝑎 ⊻ 𝑏⟩ (⊻ stands for xor). Any classical bijection
𝑓 : {0, 1}𝑛 → {0, 1}𝑛 can be lifted to a unitary operator𝑈𝑓 on (C2)⊗𝑛 that maps |𝑥⟩ to |𝑓 (𝑥)⟩.
Performing a measurement on a qubit in state 𝛼 |0⟩ + 𝛽 |1⟩ makes the state collapse to |0⟩ with

probability |𝛼 |2 and to |1⟩ with probability |𝛽 |2. More generally, a measurement𝑀 is defined as a
set of linear operators {𝑀 (𝑖) }𝑘𝑖=0 satisfying

∑𝑘
𝑖=0 𝑀

(𝑖)†𝑀 (𝑖) = id. For example, the usual single-qubit
Z-basis measurementMZ is defined as {M(𝑖)Z }

1
𝑖=0 such thatM(0)Z ≜ |0⟩⟨0| andM(1)Z ≜ |1⟩⟨1|. The

process of a measurement𝑀 is described as follows:

|𝜓 ⟩ → 𝑀 (𝑖) |𝜓 ⟩ /√𝑝𝑖 𝑝𝑖 = ∥𝑀 (𝑖) |𝜓 ⟩∥2.

That is, the quantum state is projected with probability 𝑝𝑖 onto the subspace corresponding to each
𝑀 (𝑖) . The probabilistic mixture of pure states resulting from a measurement is called a mixed state.

3.2 Program Language
We define a simple, imperative language for quantum computing with minimal features. We equip
it with a straightforward small-step operational semantics and extract a denotational collecting
semantics which we use as a foundation for the model of our logic.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 6. Publication date: January 2026.

RapunSL: UntanglingQuantum Computing with Separation, Linear Combination and Mixing 6:9

Qubit x, y ∈ Qubit Variable a, b, c, ι, κ, λ ∈ Var

Pure expression 𝑒 F 𝑛 | a | op(𝑒) Value Val ∋ 𝑣,𝑤 F 𝑛

Command Cmd ∋ 𝐶 F skip | 𝐶 ;𝐶′ | if 𝑒 then 𝐶 else 𝐶′ | while 𝑒 do 𝐶

| a←𝑒 | 𝑈 [x̄] | a←𝑀 [x̄]

if 𝑒 then 𝐶 ≜ if 𝑒 then 𝐶 else skip 𝑀a [x̄] ≜ a←𝑀 [x̄]

Fig. 3. Syntax of the program language.

Quantum state |𝜓 ⟩ ∈ Qstate ≜
∑

X⊆Qubit
⊗

x∈X C
2 Store 𝑆 ∈ Store ≜ Var ⇀ Val

Fig. 4. Domains for states in the language.

Configuration 𝑐 F (𝐶, |𝜓 ⟩ , 𝑆)

(skip, 𝐶, |𝜓 ⟩ , 𝑆) → (𝐶, |𝜓 ⟩ , 𝑆) (𝐶0;𝐶1, 𝐶′ |𝜓 ⟩ , 𝑆) → (𝐶0, 𝐶1, 𝐶′, |𝜓 ⟩ , 𝑆)

(if 𝑒 then 𝐶1 else 𝐶0, 𝐶′, |𝜓 ⟩ , 𝑆) → (𝐶J𝑒K𝑆 , 𝐶
′, |𝜓 ⟩ , 𝑆)

(while 𝑒 do 𝐶, 𝐶′, |𝜓 ⟩ , 𝑆) → (if 𝑒 then (𝐶 ; while 𝑒 do 𝐶), 𝐶′, |𝜓 ⟩ , 𝑆)

(a←𝑒, 𝐶, |𝜓 ⟩ , 𝑆{a←𝑣}) → (𝐶, |𝜓 ⟩ , 𝑆{a←J𝑒K𝑆 }) (𝑈 [x̄], 𝐶, |𝜓 ⟩ , 𝑆) → (𝐶, 𝑈x̄ |𝜓 ⟩ , 𝑆)

(a←𝑀 [x̄], 𝐶, |𝜓 ⟩ , 𝑆{a←𝑣}) 𝑖→ (𝐶, 𝑀 (𝑖)x̄ |𝜓 ⟩ , 𝑆{a←𝑖})

Fig. 5. Operational semantics of the program language.

Syntax. The syntax of our program language is summarized in Fig. 3. We have pure expressions 𝑒
and commands 𝐶 . For simplicity, the command for measurement has the form a←𝑀 [x̄], requiring
that the result of the measurement be stored in some (classical) variable a. The notation 𝑀a [x̄]
used in § 2 is just shorthand for this command. We represent Boolean values using 1 for true and 0
for false. The guard of if statements and while loops is an expression. To branch on a measurement
result, one can first store the outcome of the measurement into a variable and then use it as a guard.

States. The domains for states in the language are summarized in Fig. 4. The domain Qstate
assigns a state vector |𝜓 ⟩ to some set of qubits X. We denote its elements as X ↦→ |𝜓 ⟩, or just |𝜓 ⟩
when there is no confusion. A store 𝑆 ∈ Store assigns to some set of variables a value, that is,
classical data of any type.

Semantics of pure expressions. The semantics J𝑒K𝑆 ∈ Val of a pure expression 𝑒 under the store 𝑆
is naturally defined as follows:

J𝑛K𝑆 ≜ 𝑛 JaK𝑆 ≜ 𝑆 [a] Jop(𝑒)K𝑆 ≜ op(J𝑒K𝑆)

Note that it is undefined when 𝑒 contains a variable a that is not in the domain of 𝑆 .

Operational semantics. Next, we present the operational semantics of our language. It is summa-
rized in Fig. 5. The configuration 𝑐 has the syntax shown at the top of Fig. 5. Here, |𝜓 ⟩ ∈ Qstate
and 𝑆 ∈ Store. The small-step reduction relation 𝑐 → 𝑐′, 𝑐 𝑖→ 𝑐′ is defined by the rules in Fig. 5.
Importantly, we put a label 𝑖 ∈ N on the reduction to indicate the result of a measurement𝑀 [x̄].

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 6. Publication date: January 2026.

6:10 Yusuke Matsushita, Kengo Hirata, Ryo Wakizaka, and Emanuele D’Osualdo

Behaviour tree BTree ∋ 𝑡 F Branch(𝑡) | Leaf (|𝜓 ⟩ , 𝑆) | Nil (coinductively)

J𝜖K(|𝜓 ⟩ , 𝑆) ≜ Leaf (|𝜓 ⟩ , 𝑆) Jskip, 𝐶 K(|𝜓 ⟩ , 𝑆) ≜ J𝐶 K(|𝜓 ⟩ , 𝑆)

J𝐶0;𝐶1, 𝐶′K(|𝜓 ⟩ , 𝑆) ≜ J𝐶0, 𝐶1, 𝐶′K(|𝜓 ⟩ , 𝑆)

Jif 𝑒 then 𝐶1 else 𝐶0, 𝐶′K(|𝜓 ⟩ , 𝑆) ≜ J𝐶J𝑒K𝑆 , 𝐶
′K(|𝜓 ⟩ , 𝑆)

Jwhile 𝑒 do 𝐶, 𝐶′K(|𝜓 ⟩ , 𝑆) ≜ Jif 𝑒 then (𝐶; while 𝑒 do 𝐶), 𝐶′K(|𝜓 ⟩ , 𝑆)

Ja←𝑒, 𝐶K(|𝜓 ⟩ , 𝑆{a←𝑣}) ≜ J𝐶 K(|𝜓 ⟩ , 𝑆{a←J𝑒K𝑆 }) J𝑈 [x̄], 𝐶 K(|𝜓 ⟩ , 𝑆) ≜ J𝐶 K(𝑈x̄ |𝜓 ⟩ , 𝑆)

Ja←𝑀 [x̄], 𝐶 K(|𝜓 ⟩ , 𝑆{a←𝑣}) ≜ Branch
(
J𝐶 K(𝑀 (𝑖)x̄ |𝜓 ⟩ , 𝑆{a←𝑖})

𝑖)
Fig. 6. Denotational semantics of the program language.

Denotational semantics. Now we present the denotational semantics of our language. Our deno-
tational semantics collects all the possible branches as a whole. It is summarized in Fig. 6.

First, we define the domain of behaviour trees 𝑡 ∈ BTree as possibly infinite trees coinductively by
the syntax at the top of Fig. 6. The branch Branch(𝑡) represents branching by a measurement. The
leaf Leaf (|𝜓 ⟩ , 𝑆) represents a branching-free terminating execution with the final state (|𝜓 ⟩ , 𝑆).
The nil tree Nil represents a branching-free non-terminating execution.

We also define the partial order 𝑡 ≤ 𝑡 ′ over behaviour trees coinductively by the rules Nil ≤ 𝑡 ,
Leaf (|𝜓 ⟩ , 𝑆) ≤ Leaf (|𝜓 ⟩ , 𝑆), and “if 𝑡𝑖 ≤ 𝑡 ′𝑖 for each 𝑖 , then Branch(𝑡) ≤ Branch(𝑡 ′)”. In other
words, 𝑡 ≤ 𝑡 ′ means that 𝑡 ′ can be obtained from 𝑡 by replacing each occurrence of Nil with some
tree. Also, we define the child access 𝑡 .𝑖 as Branch(𝑡 ′).𝑖 ≜ 𝑡 ′𝑖 and undefined otherwise.

The denotational semantics J𝐶 K(|𝜓 ⟩ , 𝑆) ∈ BTree is defined inductively by the equations in Fig. 6.
The semantics is defined for a general sequence of commands 𝐶 (𝜖 is the empty sequence). Techni-
cally, the least fixed point for the equations in Fig. 6 is constructed as the limit lim𝑛→∞J−K𝑛 (−,−)
of 𝑛-th approximations J−K𝑛 (−,−) : SemArg ⇀ BTree, leaving parts that have not terminated in 𝑛

steps as Nil.6 Notably, we can enjoy equational reasoning using the denotational semantics.
The following theorem formalizes the relation between operational and denotational semantics.

Theorem 1 (Equivalence of the operational and denotational semantics). Take any configuration
𝑐 = (𝐶, |𝜓 ⟩ , 𝑆). The configuration never gets stuck in any branches (i.e., any 𝑐′ reachable from 𝑐 is
reducible) if and only if 𝑡 ≜ J𝐶 K(|𝜓 ⟩ , 𝑆) is defined. Moreover, assuming that 𝑡 is defined, 𝑐 𝑖→∗ (|𝜙⟩ , 𝑆 ′)
holds if and only if 𝑡 .𝑖 = Leaf (|𝜙⟩ , 𝑆 ′).

Proof. For the first statement, the backward implication is straightforward. The forward im-
plication follows from the definedness of all the approximations J−K𝑛 , proved by induction over
𝑛. For the second statement, the forward implication is obtained by unfolding J−K. The backward
implication can be proved by the fact that there exists some 𝑛 such that the 𝑛-th approximation has
that leaf, i.e., J𝐶 K𝑛 (|𝜓 ⟩ , 𝑆) .𝑖 = Leaf (|𝜙⟩ , 𝑆 ′). □

6 First, let Sem(𝑓) (−, −, −) : SemArg ⇀ BTree for 𝑓 : SemArg ⇀ BTree (where SemArg ≜ Cmd∗ × Qstate × Store) be
the map obtained by replacing all the self-references to J−K with 𝑓 in the definition of J𝐶 K(|𝜓 ⟩ , 𝑆) in Fig. 6. Then
the 𝑛-th approximation is inductively defined by J−K0 (−, −) ≜ 𝜆_, _, _.Nil and J−K𝑛+1 (−, −) ≜ Sem(J−K𝑛 (−, −)) .
Finally, we set J−K(−, −) ≜ lim𝑛→∞J−K𝑛 (−, −) . Here, we take the limit of an 𝜔-chain (i.e., increasing sequence)
J−K0 (−, −) ≤ J−K1 (−, −) ≤ J−K2 (−, −) ≤ · · · , which is defined because BTree is 𝜔-complete. Note that partial maps
SemArg ⇀ BTree are given the pointwise order, where undefined parts are regarded as the maximum element.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 6. Publication date: January 2026.

RapunSL: UntanglingQuantum Computing with Separation, Linear Combination and Mixing 6:11

𝑎, 𝑏 ∈ Res ≜ Qstate × Store 𝑃,𝑄 ∈ SLProp ≜ P(M(Res))

𝑃 ⊢ 𝑄 ≜ 𝑃 ⊆ 𝑄 𝑃 ⊢ 𝑃 𝑃 ⊢ 𝑄 𝑄 ⊢ 𝑅
𝑃 ⊢ 𝑅

Fig. 7. Model of RapunSL’s SL propositions.

4 The RapunSL Logic
In this section, we formally introduce our logic, RapunSL. We treat assertions and judgments
semantically, with entailment rules being just valid lemmas about the semantic model.

4.1 Resources, Propositions and Entailment
We start by fixing notation for multisets, which we use to build our model of mixed state resources.

Definition 2 (Multisets). For a set 𝐴, the set of multisetsM(𝐴) is defined as the quotient of the
set7

⋃
𝐼 ∈Set 𝐼 → 𝐴 over the following equivalence relation: 𝑓 : 𝐼 → 𝐴 and 𝑔 : 𝐽 → 𝐴 are equivalent

if there is a bijection 𝑝 : 𝐼 → 𝐽 such that 𝑓 = 𝑔 ◦ 𝑝 . In other words, multisets are maps with the key
forgotten. We write ⌊𝑓 ⌋ ∈ M(𝐴) for the multiset of the equivalence class of 𝑓 : 𝐼 → 𝐴.

We use the extensional notation {|𝑎0, . . . , 𝑎𝑛−1 |}, regarding the sequence as a map from {0, . . . , 𝑛−
1}. For example, the multiset {| 0, 1, 1, 2 |} is the same as {| 2, 1, 0, 1 |} but different from {| 0, 1, 2 |}. We
also use the comprehension notation for multisets. For example, we can write {| 𝑓 𝑖 | 𝑖 ∈ 𝐼 |} for ⌊𝑓 :
𝐼 → 𝐴⌋. Also, we can take an element from multisets in the comprehension notation, using multiset
membership ∈m, taking the multiplicity into account. For example, {|𝑛 | 𝑛 ∈m {| 0, 0, 1, 5 |}, 𝑛 < 2 |}
means the multiset {| 0, 0, 1 |}, not {| 0, 1 |}.

Also, multiset inclusion𝑚 ⊆m 𝑚′ over𝑚,𝑚′ ∈ M(𝐴) is defined as follows: ⌊𝑓 : 𝐼 → 𝐴⌋ ⊆m ⌊𝑔 :
𝐽 → 𝐴⌋ holds if and only if there exists an injection 𝑝 : 𝐼 → 𝐽 such that 𝑓 = 𝑔 ◦ 𝑝 . For example,
{| 0, 1, 2 |} ⊆m {| 0, 1, 2, 2 |} holds, but {| 0, 1, 2, 2 |} ⊆m {| 0, 1, 2 |} does not. □

Now we can model RapunSL’s SL propositions as presented in Fig. 7. A resource 𝑎 ∈ Res consists
of a quantum state X ↦→ |𝜓 ⟩ ∈ Qstate and a store 𝑆 ∈ Store. A mixed state is represented as amultiset
of resources, collecting all the outcomes of branching due to measurement. An SL proposition
𝑃 ∈ SLProp is modelled as the set of multisets of resources that satisfy it. The entailment relation
𝑃 ⊢ 𝑄 is defined simply by set inclusion, which is clearly reflexive and transitive. We can define the
standard connectives, such as the universal and existential quantifiers ∀𝑥 ∈ 𝐴. 𝑃𝑥 , ∃𝑥 ∈ 𝐴. 𝑃𝑥 , as
usual, with standard proof rules; please refer to §A.1 for the details.

4.2 Bare Mixing
Tagged mixing 0⊕ι1 we introduced in § 2 is derived, in RapunSL, from a more fundamental con-
nective ⊕ called bare mixing, defined in Fig. 8. A proposition 𝑃 ⊕ 𝑄 represents all collections of
outcomes in the mixed states described by 𝑃 and by 𝑄 . It is therefore naturally expressed via
(pointwise) multiset sum.

Definition 3 (Sum of multisets). The sum of multisets𝑚⊎𝑚′ is defined as follows: ⌊𝑓 : 𝐼 → 𝐴⌋⊎⌊𝑔 :
𝐽 → 𝐴⌋ ≜ ⌊ℎ : 𝐼 + 𝐽 → 𝐴⌋ where ℎ (inl 𝑖) ≜ 𝑓 𝑖 and ℎ (inr 𝑗) ≜ 𝑔 𝑗 . For example, {| 0, 1 |} ⊎ {| 1, 2 |} =
{| 0, 1, 1, 2 |}. Moreover, the indexed sum

⊎
𝑥∈𝐼 𝑚𝑥 over an indexed family of multisets (𝑚𝑥)𝑥∈𝐼 is

defined as
⊎

𝑥∈𝐼 ⌊𝑓𝑥 : 𝐽𝑥 → 𝐴⌋ ≜ ⌊𝑔 :
⊔

𝑥∈𝐼 𝐽𝑥 → 𝐴⌋ where 𝑔 (𝑥, 𝑗) ≜ 𝑓𝑥 𝑗 . We can also use the
comprehension notation {| 𝑎 | 𝑥 ∈ 𝐼 , 𝑎 ∈m 𝑚𝑥 |} for

⊎
𝑥∈𝐼 𝑚𝑥 . □

7 Here, we fix some universe of sets Set.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 6. Publication date: January 2026.

6:12 Yusuke Matsushita, Kengo Hirata, Ryo Wakizaka, and Emanuele D’Osualdo

nb ≜ {{| |}} 𝑃 ⊕ 𝑄 ≜
{
𝑚 ⊎𝑚′

��𝑚 ∈ 𝑃, 𝑚′ ∈ 𝑄 }⊕
𝑥∈𝐼 𝑃𝑥 ≜

{⊎
𝑥∈𝐼 𝑚𝑥

�� ∀𝑥 ∈ 𝐼 .𝑚𝑥 ∈ 𝑃𝑥
}

bmix-mono
𝑃 ⊢ 𝑃 ′ 𝑄 ⊢ 𝑄 ′

𝑃 ⊕ 𝑄 ⊢ 𝑃 ′ ⊕ 𝑄 ′
nb-bmix
nb ⊕ 𝑃 ⊣⊢ 𝑃

bmix-comm
𝑃 ⊕ 𝑄 ⊣⊢ 𝑄 ⊕ 𝑃

bmix-assoc
(𝑃 ⊕ 𝑄) ⊕ 𝑅 ⊣⊢ 𝑃 ⊕ (𝑄 ⊕ 𝑅)

bigbmix-mono
∀𝑥 ∈ 𝐼 . (𝑃𝑥 ⊢ 𝑄𝑥)⊕
𝑥∈𝐼 𝑃𝑥 ⊢

⊕
𝑥∈𝐼 𝑄𝑥

bigbmix-comm
𝑓 : 𝐼 → 𝐽 is a bijection⊕

𝑥∈𝐼 𝑃 𝑓 𝑥 ⊣⊢
⊕

𝑦∈ 𝐽 𝑃𝑦

bigbmix-assoc⊕
𝑥∈𝐼

⊕
𝑦∈ 𝐽𝑥 𝑃𝑥,𝑦 ⊣⊢

⊕
(𝑥,𝑦) ∈⊔𝑥 ∈𝐼 𝐽𝑥

𝑃𝑥,𝑦

nb-bigbmix
nb ⊣⊢

⊕
_∈∅

bmix-bigbmix
𝑃0 ⊕ 𝑃1 ⊣⊢

⊕
𝑖∈{0,1} 𝑃𝑖

Fig. 8. Bare mixing and its proof rules in RapunSL.

𝜀Qstate ≜ ∅ ↦→ 1 (X ↦→ |𝜓 ⟩) ·Qstate (Y ↦→ |𝜙⟩) ≜ X ∪ Y ↦→ |𝜓 ⟩ ⊗ |𝜙⟩ if X ∩ Y = ∅
𝜀Store ≜ ∅ 𝑆 ·Store 𝑆 ′ ≜ 𝑆 ∪ 𝑆 ′ if dom 𝑆 ∩ dom𝑆 ′ = ∅

𝜀Res ≜ (𝜀Qstate, 𝜀Store) (|𝜓 ⟩ , 𝑆) ·Res (|𝜙⟩ , 𝑆 ′) ≜ (|𝜓 ⟩ ·Qstate |𝜙⟩ , 𝑆 ·Store 𝑆)

Fig. 9. PCM structure over Qstate, Store, and Res.

Figure 8 present rules that reflect basic properties of the multiset sum semantics. Notably, binary
mixing ⊕ has the unit nb (nb-bmix) and is commutative (bmix-comm) and associative (bmix-assoc).
Here, we introduce the no-behaviour assertion nb, modelled as the empty multiset. As we allow
finite and infinite multisets, we can also introduce the indexed mixing

⊕
𝑥∈𝐼 𝑃𝑥 over an arbitrary

(possibly infinite) set 𝐼 . Indexed mixing is commutative and associative (bigbmix-comm, bigbmix-
assoc). Note that nb corresponds to mixing indexed over the empty set ∅ (nb-bigbmix; here the
body of

⊕
is an empty family of propositions) and binary ⊕ corresponds to mixing indexed over

{0, 1} (bmix-bigbmix).

4.3 Separating Conjunction
Our next question is how to define separating conjunction ∗. Following the usual approach, we use
PCMs (partial commutative monoids).

Definition 4 (PCM). A partial commutative monoid (PCM) (𝐴, 𝜀𝐴 ∈ 𝐴, ·𝐴 : 𝐴 ×𝐴 ⇀ 𝐴) is a set
𝐴 equipped with the unit 𝜀𝐴 and the partial product ·𝐴 (we may omit the subscript) such that
𝜀𝐴 ·𝐴 𝑎 = 𝑎, 𝑎 ·𝐴 𝑏 = 𝑏 ·𝐴 𝑎, and (𝑎 ·𝐴 𝑏) ·𝐴 𝑐 = 𝑎 ·𝐴 (𝑏 ·𝐴 𝑐). Here, we use the Kleene equality, where
the left-hand side is defined if and only if the right-hand side is defined. □

The PCM structure over Qstate, Store and Res, presented in Fig. 9, is standard. For stores Store,
the product is defined only if the domains are disjoint. For quantum states Qstate, the product is
defined only if the qubit sets are disjoint and uses the tensor product |𝜓 ⟩ ⊗ |𝜙⟩ for the qubit vector.
For resources Res, we simply define operations component-wise.

Now, our SL propositions SLProp are a set of multisetsM(Res). We want to give a PCM structure
to them to define separating conjunction ∗, the core of separation logic. The top of Fig. 10 shows
how we can do that. The unit is just the singleton multiset consisting of the unit resource. The
product distributes over each argument multiset. Note that membership 𝑎 ∈m 𝑚, 𝑏 ∈m 𝑚′ in the

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 6. Publication date: January 2026.

RapunSL: UntanglingQuantum Computing with Separation, Linear Combination and Mixing 6:13

𝜀M(Res) ≜ {| 𝜀Res |} 𝑚 ·M(Res) 𝑚′ ≜ {| 𝑎 ·Res 𝑏 | 𝑎 ∈m 𝑚, 𝑏 ∈m 𝑚′ |}

emp ≜ { 𝜀M(Res) } 𝑃 ∗ 𝑄 ≜
{
𝑚 ·M(Res) 𝑚′

��𝑚 ∈ 𝑃, 𝑚′ ∈ 𝑄 }
sep-mono
𝑃 ⊢ 𝑃 ′ 𝑄 ⊢ 𝑄 ′

𝑃 ∗ 𝑄 ⊢ 𝑃 ′ ∗ 𝑄 ′
emp-sep
emp ∗ 𝑃 ⊣⊢ 𝑃

sep-comm
𝑃 ∗ 𝑄 ⊣⊢ 𝑄 ∗ 𝑃

sep-assoc
(𝑃 ∗ 𝑄) ∗ 𝑅 ⊣⊢ 𝑃 ∗ (𝑄 ∗ 𝑅)

bigbmix-frame
(
⊕

𝑥∈𝐼 𝑃𝑥) ∗ 𝑄 ⊢
⊕

𝑥∈𝐼 (𝑃𝑥 ∗𝑄)

bigbmix-unframe
𝑄 : precise⊕

𝑥∈𝐼 (𝑃𝑥 ∗𝑄) ⊢ (
⊕

𝑥∈𝐼 𝑃𝑥) ∗ 𝑄

Fig. 10. PCM structure overM(Res), separating conjunction, and its proof rules in RapunSL.

𝑃 : precise ≜ ∀𝑚,𝑚′ ∈ 𝑃 . 𝑚 =𝑚′

𝑃 : precise 𝑄 ⊢ 𝑃
𝑄 : precise

nb, emp : precise
∀𝑥 . (𝑃𝑥 : precise)⊕

𝑥∈𝐼 𝑃𝑥 : precise
𝑃,𝑄 : precise
𝑃 ∗𝑄 : precise

Fig. 11. Precision of SL propositions.

comprehension notation takes the multiplicity into account. More explicitly, ·M(Res) is defined as
follows: ⌊𝑓 : 𝐼 → Res⌋ ·M(Res) ⌊𝑔 : 𝐽 → Res⌋ ≜ ⌊𝜆 (𝑖, 𝑗) ∈ 𝐼 × 𝐽 . 𝑓 𝑖 ·Res 𝑔 𝑗⌋.
Directly using this PCM structure, we can define empty ownership emp and separating con-

junction 𝑃 ∗ 𝑄 . We enjoy the rules sep-mono, emp-sep, sep-comm, sep-assoc directly from the
definition and the PCM structure. Also, bare mixing ⊕ distributes over separating conjunction
∗ by rules bigbmix-frame and bigbmix-unframe. This comes from the fact that multiset sum
⊎ distributes over ·M(Res) , i.e., (𝑚0 ⊎𝑚1) ·M(Res) 𝑚′ = (𝑚0 ·M(Res) 𝑚′) ⊎ (𝑚1 ·M(Res) 𝑚′) (with
the Kleene equality). Note that framing out an assertion 𝑄 bigbmix-unframe requires that the
assertion 𝑄 is precise, meaning that it represents up to one multiset of resources. Very roughly
speaking, assertions ‘without disjunction’ are precise. For example, in the rule bigbmix-unframe,
if we could set 𝑄 = (a ↦→ 0 ∨ a ↦→ 1) (which is not precise) and 𝑃0 = 𝑃1 = emp with 𝐼 = {0, 1},
then this is unsound, because the state a ↦→ 0 ⊕ a ↦→ 0 is included in the left-hand side but not in
the right-hand side. Figure 11 shows the definition and basic rules of the precision judgment 𝑃 :
precise, which are straightforward.

4.4 Reasoning aboutQuantum Programs
Now we present the features of RapunSL for reasoning about quantum programs. The sum 𝑃 +𝑄
of SL assertions, the heart of RapunSL, is discussed later in § 4.5.

Tokens for quantum and classical states. Now we introduce the tokens for quantum and classical
states as shown in Fig. 12. The quantum points-to token x̄ ↦→ |𝜓 ⟩ is defined simply as the quantum
state with the domain {x̄}. Here, distinct(x̄) means that the qubit names x̄ are mutually distinct,
i.e., x𝑖 ≠ x𝑗 if 𝑖 ≠ 𝑗 . As a special case, we have () ↦→ 𝛼 for the state of a one-dimensional vector of
zero qubit, which is just a complex-number coefficient 𝛼 working as a global phase of the (global)
state. We abbreviate such an assertion with ⌜𝛼⌝ (or sometimes just 𝛼) and represent scaling 𝛼 𝑃 as
⌜𝛼⌝ ∗ 𝑃 . The classical points-to token a ↦→ 𝑣 is modelled as standard. For utility, we introduce the
classical variable token [ā], which represents ownership of the variables a, while ignoring their
values. We also introduce the return-value token ↑𝑣 for representing the return value of a pure

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 6. Publication date: January 2026.

6:14 Yusuke Matsushita, Kengo Hirata, Ryo Wakizaka, and Emanuele D’Osualdo

x̄ ↦→ |𝜓 ⟩ ≜
{
{| ({x̄} ↦→ |𝜓 ⟩ , 𝜀) |}

�� distinct(x̄)
}

⌜𝛼⌝ ≜ () ↦→ 𝛼 𝛼 𝑃 ≜ ⌜𝛼⌝ ∗ 𝑃

a ↦→ 𝑣 ≜
{
{| (𝜀, {(a, 𝑣)}) |}

}
[ā] ≜ ∗𝑖 ∃𝑣 . a𝑖 ↦→ 𝑣 ↑𝑣 ≜ ret ↦→ 𝑣

x̄ ↦→ |𝜓 ⟩ , a ↦→ 𝑣 : precise
bigbmix-scale
𝛼 (

⊕
𝑥∈𝐼 𝑃𝑥) ⊣⊢

⊕
𝑥∈𝐼 𝛼 𝑃𝑥

qpoints-sep
x̄ ↦→ |𝜓 ⟩ ∗ ȳ ↦→ |𝜙⟩ ⊣⊢ (x̄, ȳ) ↦→ (|𝜓 ⟩ ⊗ |𝜙⟩)

scale-qpoints
𝛼 (x̄ ↦→ |𝜓 ⟩) ⊣⊢ x̄ ↦→ 𝛼 |𝜓 ⟩

Fig. 12. Tokens for quantum and classical states and their proof rules.

expression (see Fig. 13 shown later). For simplicity, it is derived as a classical points-to token for a
special variable ret ∈ Var that clients cannot use in programs.
The tokens satisfy natural proof rules, as shown in Fig. 12. First, the quantum and classical

points-to tokens are precise. Thanks to this, in particular, the phase assertion ⌜𝛼⌝ is precise, and
combining this with bigbmix-unframe along with bigbmix-frame, we can derive the property
that mixing distributes over scaling (bigbmix-scale). Also, the quantum points-to tokens can be
merged and split according to the tensor product ⊗ (qpoints-sep). So separating conjunction ∗
represents the disentanglement of quantum states along with the ownership disjointness. Note
that from it we can derive the scaling rule scale-qpoints. We also have a proof rule for permuting
the qubits of a quantum points-to token; see §A.3 for the details.

Hoare triples. Now we are ready to introduce Hoare triples, as summarized in Fig. 13. We
first define Hoare triples over pure expressions 𝑒 . For that, we introduce the logical semantics
L𝑒 M(𝑚) ∈ M(Res) for𝑚 ∈ M(Res) that adds the value of the expression to the store at the special
variable ret in every outcome. This induces a notion of weakest precondition WP 𝑒 {𝑃 } ∈ SLProp,
and we can derive the Hoare triple

{
𝑃
}
𝑒
{
𝑄
}
as an entailment towards the weakest precondition.

The definition satisfies the expected rules for triples.
We now turn to Hoare triples over commands 𝐶 . We introduce an auxiliary function Leaves(𝑡) ∈
M(Res) for 𝑡 ∈ BTree, which collects all the leaves of the tree 𝑡 as a multiset of resources. Then
we define the logical semantics L𝐶 M(𝑚) ∈ M(Res) from the denotational semantics J𝐶 K(|𝜓 ⟩ , 𝑆)
by simply collecting all the leaves starting from each outcome in the input multiset. Then the
weakest preconditionWP 𝐶 {𝑃 } ∈ SLProp and the Hoare triple

{
𝑃
}
𝐶

{
𝑄
}
are derived as expected.

Notably, this Hoare triple provides a probabilistic version of total correctness, collecting the results
of terminating branches only. For utility, we put classical variables ā as the superscript of pre- or
postconditions of Hoare triples to describe ownership of them [ā].
The Hoare triples satisfy the expected proof rules. The rules for quantum operations hoare-

unitary, hoare-measure and storing hoare-store follow immediately from the model. The
sequential execution also satisfies the natural chain rule hoare-seq. Notably, the Hoare triple
of RapunSL naturally satisfies the frame rule hoare-frame, the core source of modularity of
separation logic, without any side conditions. The scale rule hoare-scale immediately follows from
the frame rule. Also, executions can be combined using bare mixing hoare-bigbmix. For example,
to handle a conditional where both booleans may occur, we can first prove

{
𝑃𝑖
}
𝑒
{
↑𝑖 ∗𝑄𝑖

}
and{

𝑄𝑖

}
𝐶𝑖

{
𝑅𝑖

}
for both 𝑖 ∈ {0, 1}, apply hoare-if, and mix them with hoare-bigbmix to obtain{

𝑃0 ⊕ 𝑃1
}
if 𝑒 then 𝐶1 else 𝐶0

{
𝑅0 ⊕ 𝑅1

}
.

Verifying loops generally. The key technical idea of RapunSL is to represent, in the model, mixed
states as multisets of outcomes. The adoption of multisets allows RapunSL to support a very general

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 6. Publication date: January 2026.

RapunSL: UntanglingQuantum Computing with Separation, Linear Combination and Mixing 6:15

L𝑒 M(𝑚) ≜
{�� (|𝜓 ⟩ , 𝑆 ⊎ {(ret, J𝑒K𝑆)}) �� (|𝜓 ⟩ , 𝑆) ∈m 𝑚

��}
WP 𝑒 {𝑃 } ≜

{
𝑚

�� L𝑒 M(𝑚) ∈ 𝑃 } {
𝑃
}
𝑒
{
𝑄
}

≜ 𝑃 ⊢ WP 𝑒 {𝑄 }{
emp

}
𝑣
{
↑𝑣

} {
a ↦→ 𝑣

}
a
{
↑𝑣 ∗ a ↦→ 𝑣

} ∀𝑖 .
{
𝑃
}
𝑒𝑖

{
↑𝑣𝑖 ∗ 𝑃

}{
𝑃
}
op(𝑒)

{
↑op(𝑣) ∗ 𝑃

}{
𝑃
}
𝑒
{
𝑄
}{

𝑃 ∗ 𝑅
}
𝑒
{
𝑄 ∗ 𝑅

} ∀𝑥 ∈ 𝐼 .
{
𝑃𝑥

}
𝑒
{
𝑄𝑥

}{⊕
𝑥∈𝐼 𝑃𝑥

}
𝑒
{⊕

𝑥∈𝐼 𝑄𝑥

} {
𝑃
}
𝑒
{
𝑄
}

𝑄 ⊢ 𝑄 ′{
𝑃
}
𝑒
{
𝑄 ′

}
Leaves(𝑡) ≜

{�� (|𝜓 ⟩ , 𝑆) �� 𝑡 .𝑖 = Leaf (|𝜓 ⟩ , 𝑆)
��}

L𝐶 M(𝑚) ≜
{�� (|𝜙⟩ , 𝑆 ′) �� (|𝜓 ⟩ , 𝑆) ∈m 𝑚, (|𝜙⟩ , 𝑆 ′) ∈m Leaves(J𝐶K(|𝜓 ⟩ , 𝑆))

��}
WP 𝐶 {𝑃 } ≜

{
𝑚

�� L𝐶 M(𝑚) ∈ 𝑃
} {

𝑃
}
𝐶

{
𝑄
}

≜ 𝑃 ⊢ WP 𝐶 {𝑄 }{
𝑃
}ā

𝑒
{
𝑄
}b̄

≜
{
𝑃 ∗ [ā]

}
𝑒
{
𝑄 ∗ [b̄]

} {
𝑃
}ā

𝐶
{
𝑄
}b̄

≜
{
𝑃 ∗ [ā]

}
𝐶

{
𝑄 ∗ [b̄]

}
hoare-unitary{
x̄ ↦→ |𝜓 ⟩

}
𝑈 [x̄]

{
x̄ ↦→ 𝑈 |𝜓 ⟩

} hoare-store{
𝑃
}a

𝑒
{
↑𝑣 ∗ 𝑄

}a{
𝑃
}a

a←𝑒
{
a ↦→ 𝑣 ∗ 𝑄

}
hoare-measure{
x̄ ↦→ |𝜓 ⟩

}a
a←𝑀 [x̄]

{⊕
𝑖 (a ↦→ 𝑖 ∗ x̄ ↦→ 𝑀 (𝑖) |𝜓 ⟩)

}
hoare-seq{
𝑃
}
𝐶

{
𝑄
} {

𝑄
}
𝐶′

{
𝑅
}{

𝑃
}
𝐶 ;𝐶′

{
𝑅
}

hoare-if{
𝑃
}
𝑒
{
↑𝑖 ∗ 𝑄

} {
𝑄
}
𝐶𝑖

{
𝑅
}{

𝑃
}
if 𝑒 then 𝐶1 else 𝐶0

{
𝑅
}

hoare-while
∀𝑛.

{
𝑃𝑛

}
𝑒
{
(↑0 ∗ 𝑄𝑛) ⊕ (↑1 ∗ 𝑅𝑛)

}
∀𝑛.

{
𝑅𝑛

}
𝐶

{
𝑃𝑛+1

}{
𝑃0

}
while 𝑒 do 𝐶

{⊕
𝑛∈N𝑄𝑛

}
hoare-frame{

𝑃
}
𝐶

{
𝑄
}{

𝑃 ∗ 𝑅
}
𝐶

{
𝑄 ∗ 𝑅

}
hoare-bigbmix
∀𝑥 ∈ 𝐼 .

{
𝑃𝑥

}
𝐶

{
𝑄𝑥

}{⊕
𝑥∈𝐼 𝑃𝑥

}
𝐶

{⊕
𝑥∈𝐼 𝑄𝑥

}
hoare-post{
𝑃
}
𝐶

{
𝑄
}

𝑄 ⊢ 𝑄 ′{
𝑃
}
𝐶

{
𝑄 ′

}
hoare-scale{

𝑃
}
𝐶

{
𝑄
}{

𝛼 𝑃
}
𝐶

{
𝛼 𝑄

}
Fig. 13. Hoare triples and their proof rules.

and expressive handling of unbounded loops by the rule hoare-while. Here, we benefit from
supporting the infinitary mixing

⊕
𝑛∈N 𝑃𝑛 , modelled as the infinite sum of multisets described

by 𝑃𝑛 , that is, the limit of all finite mixing
⊕

𝑛≤𝑁 𝑃𝑛 . The rule uses two assertions indexed by
the current iteration 𝑛: 𝑃𝑛 describes the state at the beginning of the (𝑛 + 1)-th iteration (and
consequently, at the end of the 𝑛-th); 𝑄𝑛 describes the states the system can be in at the exit of
the loop. Then the rule asserts that the postcondition of the whole loop is simply the infinite
mixing, or the limit of all the finite mixing, of 𝑄𝑛 assertions. Although RapunSL provides natural
proof principles for reasoning about such infinite mixing within the logic, which works for useful
examples, more thoroughly exploring the elimination principles of

⊕
𝑛∈N is left for future work.

Notably, this achieves reasoning about probabilistic total correctness. Since all the outcomes need
to be accounted for when predicating over such resources, assertions can insist on the global
probability mass being some definite quantity by looking at the norms of all the outcomes. This

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 6. Publication date: January 2026.

6:16 Yusuke Matsushita, Kengo Hirata, Ryo Wakizaka, and Emanuele D’Osualdo

(X ↦→ |𝜓 ⟩) +Qstate (Y ↦→ |𝜙⟩) ≜ X ↦→ (|𝜓 ⟩ + |𝜙⟩) if X = Y

(|𝜓 ⟩ , 𝑆) +Res (|𝜙⟩ , 𝑆 ′) ≜ (|𝜓 ⟩ +Qstate |𝜙⟩ , 𝑆) if 𝑆 = 𝑆 ′

Fig. 14. Resource ring structure over Qstate and Res.

allows us to specify almost-sure termination, or even specify the exact probability of termination
when non-termination can happen with non-zero probability.

4.5 The Sum, the Heart of RapunSL
Now we also want the sum 𝑃 +𝑄 over SL assertions, the heart of RapunSL. Extending the PCM
structure for separating conjunction ∗, we introduce what we dub the resource ring, a new algebra
equipped with the partial sum +.
Definition 5 (Resource ring). A resource ring (𝐴, 𝜀𝐴 ∈ 𝐴, ·𝐴 : 𝐴×𝐴 ⇀ 𝐴, +𝐴 : 𝐴×𝐴 ⇀ 𝐴) is a PCM
(𝐴, 𝜀𝐴, ·𝐴) equipped with the partial sum +𝐴 (we may omit the subscript) such that 𝑎 +𝐴 𝑏 = 𝑏 +𝐴 𝑎,
(𝑎 +𝐴 𝑏) +𝐴 𝑐 = 𝑎 +𝐴 (𝑏 +𝐴 𝑐), and (𝑎 +𝐴 𝑏) ·𝐴 𝑐 = 𝑎 ·𝐴 𝑐 +𝐴 𝑏 ·𝐴 𝑐 .8 □

We can define the resource ring structure over Qstate and Res as presented in Fig. 14. As expected,
the vector sum |𝜓 ⟩ + |𝜙⟩ is used for defining +Qstate . The point is that the sum is defined only when
the two arguments agree on the same classical information, namely, the domain of qubits and the
store, which makes the sum partial.

Now, how can we define the sum 𝑃 +𝑄 over SL assertions? Again, recall that SL assertions are
a set of multisets of resources. Naively, we want something like the ‘parallel pointwise sum’ of
multisets𝑚 and𝑚′ as the sum for the resource ring. For example, something like {|𝑎, 𝑎′ |}+{|𝑏, 𝑏′ |} =
{|𝑎 +𝑏, 𝑎′ +𝑏′ |}. However, this makes the sum ill-defined, because the multiset forgets the ‘order’ of
the elements. For the example above, the sum can also be {|𝑎 + 𝑏′, 𝑎′ + 𝑏 |}. In other words, to take
the sum, the elements of the two multisets should be matched in parallel, and there can be multiple
ways to match the elements of two multisets. This is quite different from separating conjunction ∗,
where the product is just distributive over the multiset elements.

To formalize the matching over multisets, we introduce the notion of the multiset bijection.

Definition 6 (Multiset bijection). A multiset bijection 𝑟 : 𝑚 �m 𝑚′ between two multisets𝑚 ∈
M(𝐴) and 𝑚′ ∈ M(𝐵) is a multiset 𝑟 ∈ M(𝐴 × 𝐵) such that 𝑚 = {|𝑎 | (𝑎, 𝑏) ∈m 𝑟 |} and
𝑚′ = {|𝑏 | (𝑎,𝑏) ∈m 𝑟 |}. In other words, a multiset bijection between ⌊𝑓 : 𝐼 → 𝐴⌋ and ⌊𝑔 : 𝐼 → 𝐵⌋ is
⌊ℎ : 𝐼 → 𝐴 × 𝐵⌋ such that (ℎ 𝑖).0 = 𝑓 𝑖 and (ℎ 𝑖).1 = 𝑔 𝑖 (and there is no multiset bijection between
multisets of different sizes). □

Using multiset bijections, we can define the sum of SL assertions, as presented in Fig. 15. First,
the partial sum𝑚+𝑟𝑚′ over multisets can be defined once we fix the multiset bijection 𝑟 : 𝑚 �m 𝑚′.
Note thatM(Res) itself does not form a resource ring, due to the extra parameter 𝑟 . Now we define
the sum 𝑃 +𝑄 of SL assertions by taking the sum of multisets using an arbitrary multiset bijection.
The sum satisfies natural rules sum-mono, sum-comm and sum-assoc. Quantum points-to tokens
sum up according to the vector sum (qpoints-sum), as the model suggests.

The core rule of RapunSL is hoare-sum, summing Hoare triples according to +. Intuitively, this
holds because quantum programs cannot change what to execute depending on quantum state
vectors. The precondition 𝑃 +𝑃 ′ takes the sum of two initial states, taken respectively from 𝑃 and 𝑃 ′,
that agree on the classical states and can only differ in the quantum states. The two executions from
these initial states give behaviour trees of the same form. The behaviour tree for the sum initial
8 We use ‘=’ for the Kleene equality, where the left-hand side is defined if and only if the right-hand side is.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 6. Publication date: January 2026.

RapunSL: UntanglingQuantum Computing with Separation, Linear Combination and Mixing 6:17

𝑚 +𝑟 𝑚′ ≜ {|𝑎 + 𝑏 | (𝑎,𝑏) ∈m 𝑚 |} where 𝑟 : 𝑚 �m 𝑚′

𝑃 +𝑄 ≜
{
𝑚 +𝑟 𝑚′

��𝑚 ∈ 𝑃, 𝑚′ ∈ 𝑄, 𝑟 : 𝑚 �m 𝑚′
}

sum-mono
𝑃 ⊢ 𝑃 ′ 𝑄 ⊢ 𝑄 ′

𝑃 +𝑄 ⊢ 𝑃 ′ +𝑄 ′
sum-comm
𝑃 +𝑄 ⊣⊢ 𝑄 + 𝑃

sum-assoc
(𝑃 +𝑄) + 𝑅 ⊣⊢ 𝑃 + (𝑄 + 𝑅)

qpoints-sum
x̄ ↦→ |𝜓 ⟩ + x̄ ↦→ |𝜙⟩ ⊣⊢ x̄ ↦→ (|𝜓 ⟩ + |𝜙⟩)

hoare-sum{
𝑃
}
𝐶

{
𝑄
} {

𝑃 ′
}
𝐶

{
𝑄 ′

}{
𝑃 + 𝑃 ′

}
𝐶

{
𝑄 +𝑄 ′

}
hoare-frame-untangle
∀ |𝜓 ⟩ .

{
x̄ ↦→ |𝜓 ⟩

}
𝐶

{
x̄ ↦→ 𝑈 |𝜓 ⟩

}{
(x̄, ȳ) ↦→ |𝜙⟩

}
𝐶

{
(x̄, ȳ) ↦→ 𝑈x̄ |𝜙⟩

}
sum-bigbmix⊕

𝑥∈𝐼 (𝑃𝑥 +𝑄𝑥) ⊢ (
⊕

𝑥∈𝐼 𝑃𝑥) + (
⊕

𝑥∈𝐼 𝑄𝑥)
sum-frame
(𝑃 +𝑄) ∗ 𝑅 ⊢ (𝑃 ∗ 𝑅) + (𝑄 ∗ 𝑅)

Fig. 15. Sum overM(Res), the sum connective and its proof rules.

state can simply be obtained by summing the corresponding leaves of the two behaviour trees.
The reasoning principle hoare-sum is remarkable. For example, from this rule, hoare-scale and
hoare-frame, we can derive the rule hoare-frame-untangle that can reason about a (possibly)
entangled state |𝜙⟩ from the behaviours of the program 𝐶 on each input |𝜓 ⟩, by decomposing |𝜙⟩
to a linear combination of disentangled states.9 This generalizes the reasoning showcased in § 2.1.

Also, bare mixing over sum entails sum of bare mixing sum-bigbmix and sum enjoys the frame
rule sum-frame. However, the converses of these two rules do not hold in general and require
careful side conditions. Technically, this comes from the freedom of the multiset bijection 𝑟 or the
way to match the elements in the model of sum 𝑃 +𝑄 . Later, we will discuss the side conditions for
the two converses.

Remark 7 (Right adjoints of ∧, ∗, ⊕ and +). As usual, usual and separating conjunctions ∧, ∗ have
the right adjoints→ and −∗ (magic wand). Interestingly, in RapunSL, mixing ⊕ and sum + also have
the right adjoints −⊕ and −+. See §A.2 for the details.

Incompatibility and unambiguity. In order to ensure the uniqueness of the multiset bijection in the
assertion sum 𝑃 +𝑄 , we introduce a notion of incompatibility and a derived notion of unambiguity,
as in Fig. 16. First, the incompatibility 𝑎 # 𝑏 over resources 𝑎, 𝑏 ∈ Res is defined as having different
values for some variable. Then we naturally lift that to the incompatibility over propositions 𝑃 # 𝑄 .
We have natural proof rules for the incompatibility. If any pair of the assertions at different indices
are incompatible, sum of mixing can be taken in parallel (bigbmix-sum), which is the converse of
sum-bigbmix.

Using the incompatibility between resources, we also define the unambiguity 𝑃 : unambig of an
SL assertion 𝑃 , meaning that for any multiset of the assertion, any two distinct elements of the
multiset are incompatible with each other. Intuitively, this means all the branches have different
stored values. Here, we introduce an auxiliary predicate 𝑃 : nonnb, meaning that any multiset in 𝑃

is not empty (i.e., contains some behaviours). The predicate satisfies natural proof rules (see §A.3
for the details). The rule sum-unframe has three side conditions: the precision of 𝑅, the behaviour
non-emptiness (nonnb) of 𝑅, and the unambiguity of the assertions 𝑃 and 𝑅. The precision of 𝑅 is

9 Here, the universal quantification ∀ |𝜓 ⟩ can range just over some basis of a finite size.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 6. Publication date: January 2026.

6:18 Yusuke Matsushita, Kengo Hirata, Ryo Wakizaka, and Emanuele D’Osualdo

(|𝜓 ⟩ , 𝑆) # (|𝜙⟩ , 𝑆 ′) ≜ ∃a ∈ dom 𝑆 ∩ dom 𝑆 ′ . 𝑆 [a] ≠ 𝑆 ′ [a]

𝑃 # 𝑄 ≜ ∀𝑚 ∈ 𝑃 . ∀𝑚′ ∈ 𝑄. ∀𝑎 ∈m 𝑚. ∀𝑏 ∈m 𝑚′ . 𝑎 # 𝑏

𝑣 ≠ 𝑤

a ↦→ 𝑣 # a ↦→ 𝑤

𝑃 # 𝑄

𝑄 # 𝑃

𝑃 # 𝑄 𝑄 ′ ⊢ 𝑄
𝑃 # 𝑄 ′

𝑃 # 𝑄

𝑃 ∗ 𝑅 # 𝑄

∀𝑥 . (𝑃𝑥 # 𝑄)⊕
𝑥∈𝐼 𝑃𝑥 # 𝑄

𝑃 : unambig ≜ ∀𝑚 ∈ 𝑃 . ∀{|𝑎, 𝑏 |} ⊆m 𝑚. 𝑎 # 𝑏 𝑃 : nonnb ≜ ∀𝑚 ∈ 𝑃 . 𝑚 ≠ {| |}

emp, x̄ ↦→ |𝜓 ⟩ , a ↦→ 𝑣 : unambig
𝑃 : unambig 𝑄 ⊢ 𝑃

𝑄 : unambig
𝑃,𝑄 : unambig

𝑃 ∗𝑄, 𝑃 +𝑄 : unambig
bigbmix-unambig
∀𝑥 ∈ 𝐼 . (𝑃𝑥 : unambig) ∀𝑥,𝑦 ∈ 𝐼 s.t. 𝑥 ≠ 𝑦. 𝑃𝑥 # 𝑃𝑦⊕

𝑥∈𝐼 𝑃𝑥 : unambig

sum-precise
𝑃,𝑄 : precise 𝑃 : unambig

𝑃 +𝑄 : precise
bigbmix-sum

∀𝑥,𝑦 ∈ 𝐼 s.t. 𝑥 ≠ 𝑦. 𝑃𝑥 # 𝑄𝑦

(
⊕

𝑥∈𝐼 𝑃𝑥) + (
⊕

𝑥∈𝐼 𝑄𝑥) ⊢
⊕

𝑥∈𝐼 (𝑃𝑥 +𝑄𝑥)

sum-unframe
𝑃, 𝑅 : unambig 𝑅 : precise, nonnb
(𝑃 ∗ 𝑅) + (𝑄 ∗ 𝑅) ⊢ (𝑃 +𝑄) ∗ 𝑅

Fig. 16. Incompatibility and unambiguity.

𝑃 0⊕ι1 𝑄 ≜ (ι ↦→ 0 ∗ 𝑃) ⊕ (ι ↦→ 1 ∗ 𝑄)
⊕
ι

𝑥∈𝐼 𝑃𝑥 ≜
⊕

𝑥∈𝐼 (ι ↦→ 𝑥 ∗ 𝑃𝑥)

bigmix-sum
(
⊕
ι

𝑥∈𝐼 𝑃𝑥) + (
⊕
ι

𝑥∈𝐼 𝑄𝑥) ⊣⊢
⊕
ι

𝑥∈𝐼 (𝑃𝑥 +𝑄𝑥)

bigmix-unambig
∀𝑥 ∈ 𝐼 . (𝑃𝑥 : unambig)⊕

ι

𝑥∈𝐼 𝑃𝑥 : unambig
hoare-measure-mix{
x̄ ↦→ |𝜓 ⟩

}ι
𝑀 ι [x̄]

{ ⊕
ι

𝑖 x̄ ↦→ 𝑀 (𝑖) |𝜓 ⟩
}

Fig. 17. Tagged mixing and its derived proof rules.

needed for the same reason as bigbmix-unframe. The behaviour non-emptiness excludes a subtle
corner case. For example, if 𝑅 = nb (violating 𝑅 : nonnb), 𝑃 = a ↦→ 0 and 𝑄 = a ↦→ 1, then the
left-hand side is equivalent to nb, while the right-hand side entails the falsehood ⊥ ≜ ∅ because
𝑃 +𝑄 entails ⊥. The key side condition is the unambiguity of 𝑃 and 𝑅. For example, if 𝑅 = 𝛼 ⊕ 𝛽

(violating 𝑅 : unambig) and 𝑃 =𝑄 = emp, the left-hand side contains (𝛼 + 𝛽) ⊕ (𝛽 + 𝛼), while the
right-hand side does not. We similarly have unsoundness if both 𝑃 and 𝑄 are ambiguous.10 The
rule sum-precise also requires the unambiguity for a similar reason. We carefully designed the side
conditions to achieve both soundness and flexibility.

4.6 Tagged Mixing
Finally, we formally model the tagged mixing, introduced in the overview § 2.2. Figure 17 shows its
definition and proof rules. Generalizing binary tagged mixing 𝑃 0⊕ι1 𝑄 , we also introduce tagged
mixing

⊕
ι

𝑥∈𝐼 𝑃𝑥 indexed over any set 𝐼 . Tagged mixing is derived from bare mixing § 4.2 by
tagging each argument with a classical points-to token ι ↦→ 𝑥 whose value 𝑥 allows for the
10 For example, let us set 𝑃 = 𝑄 = ⌜𝛼⌝ ⊕ ⌜𝛽⌝ (neither 𝑃 : unambig nor𝑄 : unambig holds) and 𝑅 = ι ↦→ 0 ⊕ ι ↦→ 1. Then

the left-hand side of sum-unframe contains ι ↦→ 0 ∗ (⌜𝛼 + 𝛽⌝ ⊕ ⌜𝛽 + 𝛼⌝) ⊕ ι ↦→ 1 ∗ (⌜𝛼 + 𝛼⌝ ⊕ ⌜𝛽 + 𝛽⌝) while the
right-hand side does not.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 6. Publication date: January 2026.

RapunSL: UntanglingQuantum Computing with Separation, Linear Combination and Mixing 6:19

𝑃 : frameable ≜ 𝑃 : precise, unambig, nonnb

𝑃 : frameable 𝑄 ⊢ 𝑃
𝑄 : frameable

𝑃,𝑄 : frameable
𝑃 ∗𝑄, 𝑃 +𝑄 : frameable

𝐼 ≠ ∅ ∀𝑖 ∈ 𝐼 . 𝑃𝑖 : frameable⊕𝜄

𝑖∈𝐼 𝑃𝑖 : frameable

Frameable subclass FProp ∋ 𝐹 F a ↦→ 𝑣 | x ↦→ |𝜓 ⟩ | ∀𝑥 ∈ 𝐴. 𝐹𝑥
| 𝐹 ∗ 𝐹 ′ | 𝐹 + 𝐹 ′ |

⊕𝜄

𝑖∈𝐼 (≠∅) 𝐹𝑖

𝐹 ∈ FProp
𝐹 : frameable

bigbmix-frame-frameable
𝑄 : frameable⊕

𝑥∈𝐼 (𝑃𝑥 ∗𝑄) ⊣⊢ (
⊕

𝑥∈𝐼 𝑃𝑥) ∗ 𝑄

sum-frame-frameable
𝑃, 𝑅 : frameable

(𝑃 ∗ 𝑅) + (𝑄 ∗ 𝑅) ⊣⊢ (𝑃 +𝑄) ∗ 𝑅

Fig. 18. Frameability.

identification of the outcomes. Tagged mixing is very well-behaved with respect to the other
connectives. Remarkably, sum + can be taken over tagged mixing in parallel (bigmix-sum), thanks to
the classical points-to token automatically ensuring the incompatibility conditions of bigbmix-sum.
This is one of the key ideas of RapunSL, as explained in § 2.2. Also, tagged mixing is unambiguous
simply when the arguments are all unambiguous (bigmix-unambig). Notably, the Hoare rule for
measurement (hoare-measure) can be reformulated using tagged mixing (hoare-measure-mix).
Tagged mixing also enjoys natural proof rules derived from rules on bare mixing; see §A.4 for the
details. In summary, using tagged mixing, we can enjoy natural reasoning about mixed quantum
states introduced by measurements.

4.7 Handling Complexity
Frameability. So far, we have introduced various proof rules to RapunSL. Our primary goal has

been to identify the most general sound rules that achieve the desired modularity. It is unsurprising
that some of them (e.g., sum-unframe) carry intricate side conditions, but one might worry that
they are too complex for practical use.
In fact, these complex side conditions can be greatly simplified by focusing on a well-behaved

class of SL assertions, which we call frameable. The rules are summarized in Fig. 18. Frameability
frameable is simply the conjunction of precise, unambig and nonnb. As shown in Fig. 18, frameable
assertions have nice closure properties. This enables us to define a handy class FProp of frameable
SL assertions, which are obviously frameable by construction.11 Notably, frameable assertions can
be a frame for mixing and sum (bigbmix-frame-frameable, sum-frame-frameable), simplifying
the unframing rules bigbmix-unframe and sum-unframe.

Abstraction. We can go further and provide abstraction, as discussed in § 2.4. We want to abstract
away the complicated ‘factor’ 𝑃⊕ of the outcome of the programmCNOT, so that clients ofmCNOT
can safely forget the exact form of 𝑃⊕ and equate mCNOT with CNOT.
Frameability is a great match for this purpose. As long as clients know that 𝑃⊕ is frameable,

they can treat it as a frame for mixing and sum to achieve the outcome- and basis-locality (we will
explain this in more detail later in § 5.3).

For a detailed analysis of probability, we introduce the probability predicate 𝑃 : prob 𝑝 , shown in
Fig. 19.12 The predicate simply means that every state represented by 𝑃 has the total probability 𝑝 .
11 For simplicity, we describe the class syntactically in BNF. The mixing here is tagged and runs over a non-empty domain.
12 Recall that RapunSL can verify the termination probability, which is non-trivial for programs with loops, as discussed in

Verifying loops generally, § 4.4.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 6. Publication date: January 2026.

6:20 Yusuke Matsushita, Kengo Hirata, Ryo Wakizaka, and Emanuele D’Osualdo

𝑃 : prob 𝑝 ≜ ∀𝑚 ∈ 𝑃 .
∑︁

(|𝜓 ⟩,𝑆) ∈m𝑚
∥ |𝜓 ⟩∥2 = 𝑝

𝑃 : prob 𝑝 𝑄 : prob𝑞
𝑃 ∗ 𝑄 : prob𝑝𝑞

𝑃𝑖 : prob 𝑝𝑖⊕
𝑖 𝑃𝑖 : prob

∑
𝑖 𝑝𝑖

Fig. 19. Probability.

x

y

z

ret ret ⊻ (x ∧ y ∧ z)

CCCX x

y

z

tmp tmp

ret

dCCCX

Fig. 20. A CCCX gate (left) and its encoding dCCCX using dirty qubit tmp (right).

A factor like mCNOT’s 𝑃⊕ typically satisfies prob 1. So in a simple setting we can abstract such a
factor as frameable and prob 1. The probability behaves well over separating conjunction ∗ and
mixing

⊕
. To reason about the probability of sums +, we can also introduce the inner product

(and orthogonality as a special case) of SL assertions, naturally extending the usual vector calculus;
see §A.7 for the details.

5 Case Studies
This section presents a number of practical examples of RapunSL verification of quantum programs
from the literature, confirming that our logic:
G1: Enables modular reasoning by using the three locality principles;
G2: Effectively applies basis-locality to real-world programs involving measurements;
G3: Demonstrates that abstracting the global phase, as presented in § 2.4, simplifies the specifica-

tion and makes the reasoning scalable;
G4: Supports standard probabilistic features of quantum programs, such as proving almost-sure

termination of while loops.
We start with relatively simple case studies and gradually move to more complex ones. All the
details of the proofs and additional examples are available in § B. Here, we sketch the key ideas of
the proofs and highlight the significance of the examples.

Remark 8 (Utility tagged mixing notation). For brevity, we introduce the following shorthand for
tagged mixing, abusing a classical variable ι to represent the value it stores:

⊕
ι
𝑃 ≜

⊕
ι

𝑥 𝑃 [𝑥/ι].
Here, the domain of the value 𝑥 should be properly inferred and is typically set to {0, 1}. Precisely
speaking, we think of some syntax for propositions 𝑃 to define the substitution 𝑃 [𝑥/ι] here. Also,
we write

⊕
ι1,...,ι𝑛 𝑃 for

⊕
ι1 · · ·

⊕
ι𝑛 𝑃 .

5.1 DirtyQubit: Implementation of CCCX by Toffoli Gates
The first example is an implementation of the CCCX gate using a dirty qubit, which is a concrete
example of the program we mentioned in § 2.1. We show how RapunSL enables the context-
independent identification of CCCX gate with its implementation (G1).

As depicted in Fig. 20 (left), the CCCX gate is a 4-qubit multi-controlled-NOT gate that computes
ret← ret⊻ (x∧y∧z), where⊻ is the exclusive-OR operation. TheCCCX gate can be implemented

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 6. Publication date: January 2026.

RapunSL: UntanglingQuantum Computing with Separation, Linear Combination and Mixing 6:21

using the CCX (called Toffoli) gate with a dirty qubit serving as the auxiliary qubit, as illustrated in
Fig. 20 (right). Note that the CCX gate computes ret← ret ⊻ (x ∧ y).
It is important is that we must return a dirty qubit to its original state after its temporary use,

because it may be required by another computation. Thus, the goal here is to verify that Fig. 20
(right) enjoys this condition and implements CCCX correctly; however, two challenges arise here.
First, the state of tmp is unknown. Second, tmp may be entangled with x, y, z, or other qubits.
The idea for overcoming these challenges is to decompose tmp into a basis using hoare-sum.

After the decomposition, tmp can be regarded as disentangled from the other qubits for each basis
state. Consequently, the qubits other than x, y, z and tmp can later be composed by using the frame
rule. Moreover, we can obtain reasoning that is independent of the initial state of tmp because the
reasoning results for each basis state can be linearly combined.

In fact, this idea makes it possible to verify the correctness of Fig. 20 (right). First, the specification
of Fig. 20 (right) for each basis can be expressed as{

(x, y, z) ↦→ |𝑖 𝑗𝑘⟩ ∗ tmp ↦→ |ℓ⟩ ∗ ret ↦→ |𝑚⟩
}
dCCCX[x, y, z, tmp, ret]{

(x, y, z) ↦→ |𝑖 𝑗𝑘⟩ ∗ tmp ↦→ |ℓ⟩ ∗ ret ↦→ |𝑚 ⊻ (𝑖 ∧ 𝑗 ∧ 𝑘)⟩
}
.

Then, we scale the global phase (11) and sum up derivations (12) to prove for any entangled case:

∀𝑖, 𝑗, 𝑘, ℓ,𝑚 ∈ {0, 1}. { (x, y, z, tmp, ret) ↦→ |𝑖 𝑗𝑘ℓ𝑚⟩ } dCCCX
{ (x, y, z, tmp, ret) ↦→ (CCCXx,y,z,ret ⊗ idtmp) |𝑖 𝑗𝑘ℓ𝑚⟩ }
∀𝑖, 𝑗, 𝑘, ℓ,𝑚 ∈ {0, 1}.

{ (x, y, z, tmp, ret) ↦→ 𝛼𝑖 𝑗𝑘ℓ𝑚 |𝑖 𝑗𝑘ℓ𝑚⟩ ∗ w̄ ↦→
��𝜓𝑖 𝑗𝑘ℓ𝑚

〉
} dCCCX

{ (x, y, z, tmp, ret) ↦→ (CCCXx,y,z,ret ⊗ idtmp)𝛼𝑖 𝑗𝑘ℓ𝑚 |𝑖 𝑗𝑘ℓ𝑚⟩ ∗ w̄ ↦→
��𝜓𝑖 𝑗𝑘ℓ𝑚

〉
}

{ (x, y, z, tmp, ret, w̄) ↦→ ∑
𝑖, 𝑗,𝑘,ℓ,𝑚 𝛼𝑖 𝑗𝑘ℓ𝑚 |𝑖 𝑗𝑘ℓ𝑚⟩

��𝜓𝑖 𝑗𝑘ℓ𝑚

〉
} dCCCX

{ (x, y, z, tmp, ret, w̄) ↦→ (CCCXx,y,z,ret ⊗ idtmp,w̄)
∑

𝑖, 𝑗,𝑘,ℓ,𝑚 𝛼𝑖 𝑗𝑘ℓ𝑚 |𝑖 𝑗𝑘ℓ𝑚⟩
��𝜓𝑖 𝑗𝑘ℓ𝑚

〉
}

(12)

(11)

The state
∑

𝑖, 𝑗,𝑘,ℓ,𝑚 𝛼𝑖 𝑗𝑘ℓ𝑚 |𝑖 𝑗𝑘ℓ𝑚⟩
��𝜓𝑖 𝑗𝑘ℓ𝑚

〉
can represent any entangled state of the qubits, not only

including the dirty qubit tmp, but also uninvolved qubits w̄ introduced as a frame, proving that the
dCCCX gate is indeed a valid implementation of CCCX regardless of the context.

5.2 Quantum Teleportation
The second example we demonstrate is the quantum teleportation protocol. In this protocol, there
are two parties: Alice and Bob, and they communicate two bits of classical information to teleport
one qubit of quantum information from Alice to Bob. Here, we prove the correctness of the protocol
in a modular way (G1). That is, we analyse the behaviour of Alice and Bob separately and then
combine the results to prove the correctness of the whole protocol. This protocol involves the use
of a shared entangled state and measurements (G2).

The quantum teleportation protocol can be implemented as follows:

Bell[x, y] ≜ H[x]; CX[x, y]
Alicea,b [x, y] ≜ CX[x, y]; H[x]; a←MZ [x]; b←MZ [y]

Boba,b [z] ≜ if a then X[z]; if b then Z[z]
Teleporta,b [x, y, z] ≜ Bell[y, z]; Alicea,b [x, y]; Boba,b [z] .

The protocol begins by preparing the Bell state |Bell⟩ ≜ 1√
2
(|00⟩ + |11⟩) shared between Alice and

Bob by using Bell[y, z]. Although Alice’s qubit y and Bob’s qubit z are entangled, in RapunSL, we
can reason about Alicea,b [x, y] and Boba,b [z] separately by considering the case in which y and

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 6. Publication date: January 2026.

6:22 Yusuke Matsushita, Kengo Hirata, Ryo Wakizaka, and Emanuele D’Osualdo

z are in some classical state. Consequently, if we introduce a Boolean variable 𝑥 to represent the
basis of the qubit x, we obtain:13{

(x, y) ↦→ |𝑥𝑖⟩
}a,b

Alicea,b [x, y]
{ 1√

2

⊕a,b
(−1)𝑥a · 𝛿𝑥⊻𝑖,b · (x, y) ↦→ |ab⟩

}{
z ↦→ |𝑖⟩ ∗ a ↦→ 𝑎 ∗ b ↦→ 𝑏

}
Boba,b [z]

{
(−1)𝑥𝑎 (z ↦→ |𝑏 ⊻ 𝑖⟩) ∗ a ↦→ 𝑎 ∗ b ↦→ 𝑏

}
Now, we verify the correctness of the whole protocol.{

(x, y, z) ↦→ |𝑥𝑖𝑖⟩
}a,b

Alice[x, y]; Boba,b [z]
{ 1√

2

⊕a,b
𝛿𝑥⊻𝑖,b ∗ (x, y, z) ↦→ |ab(b ⊻ 𝑖)⟩

}
{
(x, y, z) ↦→

∑︁
𝑖=0,1

1√
2
|𝑥𝑖𝑖⟩

}a,b
Alice[x, y]; Boba,b [z]

{ 1
2

⊕a,b
(x, y, z) ↦→ |ab𝑥⟩

}
{
x ↦→ |𝜓 ⟩ ∗ (y, z) ↦→ |Bell⟩

}a,b
Alice[x, y]; Boba,b [z]

{ 1
2

⊕a,b
(x, y) ↦→ |ab⟩ ∗ z ↦→ |𝜓 ⟩

}{
x ↦→ |𝜓 ⟩ ∗ (y, z) ↦→ |Bell⟩

}a,b
Alice[x, y];Boba,b [z]

{
z ↦→ |𝜓 ⟩ ∗ 1

2

⊕a,b
(x, y) ↦→ |ab⟩

} (15)

(14)

(13)

We frame z ↦→ |𝑖⟩ into Alice’s Hoare triple and frame Alice’s postcondition into Bob’s Hoare
triple to obtain the first line. At (13), we use hoare-sum to combine them to obtain the Bell state
in the precondition. To generalize the input state |𝑥⟩ to |𝜓 ⟩ = 𝛼0 |0⟩ + 𝛼1 |1⟩, we multiply by
the scalar 𝛼𝑥 and sum over 𝑥 at (14). We use bigbmix-unframe at (15) to separate off the state
𝑃 ≜ 1

2
⊕a,b (x, y) ↦→ |ab⟩, which is frameable and prob 1.

5.3 Lattice Surgery: Implementation of CNOT with Measurements
As we sketched in § 2.4, we can verify a sort of equivalence between the CNOT gate and its
implementation using 2-qubit measurements in Fig. 2. This technique of replacing a CNOT gate
with 1-qubit gates and 1- or 2-qubit measurements is the core idea of lattice surgery [Fowler and
Gidney 2019], which can be used for fault-tolerant quantum computing. This example illustrates
how RapunSL achieves the verification of the program with measurements (G2), and how we can
hide the information of the global phase that depends on the measurement outcomes but does not
affect the final state (G3).

The program we verify, mCNOT, is defined by

mCNOTι,κ,λ [x, y, z] ≜ if MιXX [y, z] then Z[x];
if MκZZ [x, y] then X[z]; H[y]; if MλZ [y] then Z[x] .

We introduce shorthand if 𝑀 ι [x̄] then 𝐶 ≜ 𝑀 ι [x̄]; if ι then 𝐶 . Here, classical variables ι, κ and λ
are used for storing the results of measurements. Using our logic, we can easily derive the following
Hoare triple by step-by-step reasoning:

∀𝑎,𝑏 ∈ {0, 1}.
{
x ↦→ |𝑎⟩ ∗ y ↦→ |0⟩ ∗ z ↦→ H |𝑏⟩

}ι,κ,λ
mCNOTι,κ,λ [x, y, z]{ 1

2
√

2

⊕
ι,κ,λ
(−1)𝑎𝑏+ικ+κλ · (x, y) ↦→ |𝑎λ⟩ ∗ z ↦→ H |𝑏⟩

}
The postcondition can be simplified as follows:

1
2
√

2

⊕
ι,κ,λ
(−1)𝑎𝑏+ικ+κλ · (x, y) ↦→ |𝑎λ⟩ ∗ z ↦→ H |𝑏⟩

⊢ (−1)𝑎𝑏 1
2
√

2
· (x, z) ↦→ |𝑎⟩ ⊗ H |𝑏⟩ ∗

⊕
ι,κ,λ
(−1)ικ+κλ · y ↦→ |λ⟩

⊢ (x, z) ↦→ CX (|𝑎⟩ ⊗ H |𝑏⟩) ∗ 1
2
√

2

⊕
ι,κ,λ
(−1)ικ+κλ · y ↦→ |λ⟩ .

13 We write 𝛿𝑎,𝑏 for the Kronecker delta, returning 1 if 𝑎 = 𝑏 and 0 otherwise.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 6. Publication date: January 2026.

RapunSL: UntanglingQuantum Computing with Separation, Linear Combination and Mixing 6:23

x if 𝑒1 then X if a ∧ ¬b then X

y if 𝑒2 then X
a

if a ∧ b then X

z if 𝑒3 then X
b

if ¬a ∧ b then X

error syndrome measurement recovery

Fig. 21. Bit-flip code error correction procedure.

Now, let 𝑃⊕ ≜ 1
2
√

2

⊕
ι,κ,λ (−1)ικ+κλ · y ↦→ |λ⟩. It satisfies the nice property 𝑃⊕ : frameable, prob 1,

i.e., it is frameable and its total probability is 1 (recall Figs. 18 and 19, § 4.5). With hoare-scale and
hoare-sum, we can derive the following general specification of mCNOT for any input state |𝜓 ⟩:

∀ |𝜓 ⟩ .
{
(x, z) ↦→ |𝜓 ⟩ ∗ y ↦→ |0⟩

}ι,κ,λ
mCNOTι,κ,λ [x, y, z]

{
(x, z) ↦→ CX |𝜓 ⟩ ∗ 𝑃⊕

}
.

From this assertion, we can further derive the following, saying thatmCNOT behaves like CNOT
even if x and z are entangled with any other qubits:

∀ |𝜓 ⟩ .
{
(x, z, w̄) ↦→ |𝜓 ⟩ ∗ y ↦→ |0⟩

}ι,κ,λ
mCNOTι,κ,λ [x, y, z]

{
(x, z, w̄) ↦→ CXx,z |𝜓 ⟩ ∗ 𝑃⊕

}
.

Remarkably, for the derivation (which uses hoare-sum), it suffices to know that 𝑃⊕ is some assertion
satisfying frameable, without knowing the exact form of 𝑃⊕ , thanks to the fact that frameable
assertions can freely frame into and out of sum + (sum-frame-frameable). We can further enrich
this for mixing

⊕
(using hoare-bigbmix and bigbmix-frame-frameable). This demonstrates

the power of abstraction (G3). Note that, when we have some succeeding program 𝐶 and want to
prove the whole specification, just framing 𝑃⊕ suffices:{

(x, z, w̄) ↦→ CXx,z |𝜓 ⟩
}
𝐶

{
𝑄
}{

(x, z, w̄) ↦→ CXx,z |𝜓 ⟩ ∗ 𝑃⊕
}
𝐶

{
𝑄 ∗ 𝑃⊕

} hoare-frame{
(x, z, w̄) ↦→ |𝜓 ⟩ ∗ y ↦→ |0⟩

}ι,κ,λ
mCNOTι,κ,λ [x, y, z]; 𝐶

{
𝑄 ∗ 𝑃⊕

} hoare-seq

5.4 Error Correction: Bit-Flip Code
Fault tolerance is essential for achieving reliable quantum computation, and error correction lies at
its core. From the perspective of program verification, verifying such quantum error-correcting
codes (QECCs) is a crucial task that must be addressed. In this subsection and the next § 5.5, we
present case studies of verifying two simple but fundamental QECCs using RapunSL, the bit-flip
code and the Shor code, while highlighting how RapunSL achieves our goals (G1, G2, G3).
The bit-flip code is the simplest QECC that can correct a single bit-flip error (a.k.a. X error),

i.e., a quantum error that flips one qubit flips from |0⟩ to |1⟩ or vice versa. In order to make
quantum information tolerant to such errors, we encode a single qubit of quantum information
into three actual qubits. Concretely, we encode the state |0⟩ as |000⟩, and |1⟩ as |111⟩. The quantum
information we want to protect is called a logical qubit, and the three qubits that store the logical
qubit are called physical qubits. The state of the physical qubits has some robustness, and such
robustness enables us to detect and correct the bit-flip error.
The circuit for the bit-flip code error correction procedure is shown in Fig. 21. The left-most

column models the occurrence of bit-flip errors, where each if 𝑒𝑖 then X applies an X gate to the
qubit if the error 𝑒𝑖 ∈ {0, 1} occurs. We assume 𝑒1 + 𝑒2 + 𝑒3 ≤ 1 to ensure that at most one qubit is
flipped. The procedure of error correction is as follows: we first measure the syndrome—the effect
caused by the error—and then use the measurement outcomes to recover the logical qubit. After

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 6. Publication date: January 2026.

6:24 Yusuke Matsushita, Kengo Hirata, Ryo Wakizaka, and Emanuele D’Osualdo

the recovery procedure, the syndrome affects only the global phase of the logical qubit, and thus
we can ignore it.

As we did in the previous example, we can specify and verify the correctness of the bit-flip code
error correction procedure BitEC, using the power of RapunSL:

∃ 𝑃 : frameable, prob 1. ∀𝛼, 𝛽.
{
(x, y, z) ↦→ X𝑒1X𝑒2X𝑒3 (𝛼 |000⟩ + 𝛽 |111⟩)

}a,b
BitECa,b [x, y, z]

{
(x, y, z) ↦→ (𝛼 |000⟩ + 𝛽 |111⟩) ∗ 𝑃

}
.

The postcondition (x, y, z) ↦→ (𝛼 |000⟩ + 𝛽 |111⟩) ∗ 𝑃 describes the state of the system after the
error correction procedure. Here, (x, y, z) ↦→ (𝛼 |000⟩ + 𝛽 |111⟩) captures the restored logical state
of the qubits, while 𝑃 abstracts the effect of the measured syndrome—that contains the difference
of global phase induced by measurement outcomes (G3).

Crucially, the use of separating conjunction ∗makes the distinction between the logical state and
the syndrome information explicit and formal. This separation reflects the fact that the syndrome
affects only the global phase or auxiliary context, and not the logical content of the qubits. Such
a formulation not only captures the correctness of the procedure but also demonstrates how
separation in the logic naturally mirrors separation in the underlying physical system.
We can also think of a phase-flip error, applying the Z gate instead of X. A phase-flip error-

correction code can be obtained immediately from the bit-flip code. Instead of the Z basis ⟨|0⟩ , |1⟩⟩,
the new code uses the X basis ⟨|+⟩ , |−⟩⟩, encoding a qubit |+⟩ as |+++⟩ and |−⟩ as |−−−⟩. The
error correction procedure PhaseEC can be obtained by adding Hadamard H gates before and after
BitEC for the basis transformation. Its specification can be naturally derived from that of BitEC.

5.5 Error Correction: Shor’s Code
The Shor code [Shor 1995] is a QECC that encodes one logical qubit with nine physical qubits and
can correct any single-qubit unitary error. In general, if a QECC can correct both a single X error
and a single phase-flip error (a.k.a. Z error), it can correct any single-qubit error𝑈 , because𝑈 can
be expressed as a linear combination of id, X, Z, and XZ. Shor’s code achieves the correction of
both X and Z errors by concatenating a 3-qubit bit-flip code with a 3-qubit phase-flip code: first it
encodes three Z-error-tolerant qubits using the 3-qubit phase-flip code, and then applies the 3-qubit
bit-flip code to those encoded qubits to obtain a single logical qubit. Let us denote the logical qubit
state that encodes the state |𝜓 ⟩ in the phase-flip code as |𝜓L⟩. Concretely, the Shor code encodes
the logical qubit state 𝛼 |0⟩ + 𝛽 |1⟩ into

𝛼 |0L0L0L⟩ + 𝛽 |1L1L1L⟩ .

As a result, any X error on the logical qubit can be corrected by the top-level bit-flip code, and any
Z error can be corrected by the bottom-level phase-flip code.

The error correction procedure of the Shor code is roughly given as follows, where PhaseEC is
the Z error-correction procedure defined above and BitECL is a variant of the X error-correction
procedure BitEC that works on logical qubits (we omit classical variables here for simplicity):

ShorEC[x̄, ȳ, z̄] ≜ PhaseEC[x̄]; PhaseEC[ȳ]; PhaseEC[z̄]; BitECL [x̄, ȳ, z̄] .

The Shor code error correction procedure can be proved by combining the specifications of PhaseEC
and BitECL (G1). In each error correction procedure, we perform syndrome measurement and
accumulate some global phase information. However, framing such a syndrome by separating
conjunction allows us to abstract the global phase information, enabling scalable reasoning without
any blow-up in the size of the formula (G3).

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 6. Publication date: January 2026.

RapunSL: UntanglingQuantum Computing with Separation, Linear Combination and Mixing 6:25

5.6 Probabilistic Choice and Almost Sure Termination
Finally, we present a case study of verifying a quantum program that involves probabilistic choice
and almost sure termination (G4).
Since we can use the norm of a quantum state as a probability, we can define the probabilistic

choice connective 𝑃 ⊕𝑝 𝑄 by √𝑝 𝑃 ⊕ √1 − 𝑝 𝑄 , choosing the state 𝑃 with probability 𝑝 and 𝑄 with
probability 1 − 𝑝 for 𝑝 ∈ [0, 1]. This ⊕𝑝 satisfies the following as expected:

𝑃 ⊕𝑝 𝑄 ⊣⊢ 𝑄 ⊕1−𝑝 𝑃 (𝑃 ⊕𝑝 𝑄) ⊕𝑞 𝑅 ⊣⊢ 𝑃 ⊕𝑝𝑞 (𝑄 ⊕ 𝑞

1−𝑝𝑞
𝑅)

𝑃 ⊢ 𝑄 𝑃 ′ ⊢ 𝑄 ′
𝑃 ⊕𝑝 𝑃 ′ ⊢ 𝑄 ⊕𝑝 𝑄 ′

{
𝑃
}
𝐶

{
𝑄
} {

𝑃 ′
}
𝐶

{
𝑄 ′

}{
𝑃 ⊕𝑝 𝑃 ′

}
𝐶

{
𝑄 ⊕𝑝 𝑄 ′

}
Also, the probabilistic choice program 𝐶 ⊕a𝑝 𝐶′ can be defined as follows. First, we introduce a

primitive coina𝑝 that stores 0 or 1 to a with probability 𝑝 or 1 − 𝑝 , respectively.14 We have{
emp

}a
coina𝑝

{
a ↦→ 0 ⊕𝑝 a ↦→ 1

}
.

From this, we can derive the probabilistic choice by 𝐶 ⊕a𝑝 𝐶′ ≜ coina𝑝 ; if a then 𝐶′ else 𝐶 , for
which the following rule can be derived:{

𝑃
}
𝐶

{
𝑄
} {

𝑃
}
𝐶′

{
𝑅
}{

𝑃
}a

𝐶 ⊕a𝑝 𝐶′
{
a ↦→ 0 ∗ 𝑄 ⊕𝑝 a ↦→ 1 ∗ 𝑅

}
For example, let us think of the following repeat-until-success program:

cointoss𝑝 ≜ coina𝑝 ; while a do
(
coina𝑝 ; c←c + 1

)
.

Intuitively, the program repeats tossing a coin that returns 0 with probability 𝑝 ≠ 0 until the coin
finally returns 0. The counter variable c stores the number of iterations. Our logic can prove that
this program almost surely terminates. More specifically, we can prove the following, abstracting
over an assertion 𝑃 that is frameable and has the probability 1:

∃ 𝑃 : frameable, prob 1.
{
c ↦→ 0

}a
cointoss𝑝

{
a ↦→ 0 ∗ 𝑃

}
.

6 Discussion
Automation. One point worth noting about the case studies in the previous section is that most of

the proofs follow a uniform three-step pattern: (i) prove the specification on the computational basis
(or any chosen basis) via simple symbolic execution; (ii) apply hoare-scale and hoare-frame;
and (iii) sum up the derivations with the hoare-sum to lift the result to general preconditions.

This observation also suggests a route to automation. Step (i) is essentially a standard symbolic-
execution pass augmented with basic complex number arithmetic; steps (ii)–(iii), despite applying
rules with intricate side conditions, can still be automated using the frameability notion of Fig. 18,
§ 4.7. This kind of pattern appears in recent work on automated verification of quantum programs,
such as AutoQ 2.0 [Chen et al. 2025]; see § 7 for the details.

Density matrices. A limitation of such a simple methodology is that the size of the proposi-
tions can grow exponentially with the number of measurements. As we explained in § 2.4, the
abstraction method can help mitigate the growth, or we typically find compact representations
(e.g.,

⊕𝜄

𝑖=0,1 (−1)𝜄 · x ↦→ |𝑎 ⊻ 𝜄⟩) as shown in the case studies considered so far. This method

14 Technically, we do not need to extend our program language, because we can mathematically encode coina𝑝 asMa
𝑝 [],

whereM𝑝 is the 0-qubit measurement that applies √𝑝 id returning 0 or
√

1 − 𝑝 id returning 1.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 6. Publication date: January 2026.

6:26 Yusuke Matsushita, Kengo Hirata, Ryo Wakizaka, and Emanuele D’Osualdo

should works for any Clifford circuits, but is not guaranteed to work for general programs. In such
situations where an explosion occurs, it may be preferable to work with density matrices instead.
Although we adopt a global-phase-sensitive logic rather than work with density matrices, this

choice does not preclude encoding density matrices in RapunSL. One such encoding is:

x ↦→𝜄 𝜌 ≜ ∃𝐼 . ∃{ |𝜓𝑖⟩ }𝑖∈𝐼 . 𝜌 =
∑︁

𝑖∈𝐼
|𝜓𝑖⟩⟨𝜓𝑖 | ∗

⊕𝜄

𝑖∈𝐼
x ↦→ |𝜓𝑖⟩ .

We can switch between the usual vector representation and this density-matrix representation in
RapunSL. Where basis-locality is not necessary, one can use the density matrix representation x ↦→𝜄

𝜌 . This roughly amounts to the existing approach of Deng et al. [2024] and enjoys entanglement-
and outcome-locality. Still, the existential quantification in x ↦→𝜄 𝜌 makes the assertion non-precise,
which is at odds with some advanced proof rules (e.g., bigbmix-unframe).

7 Related Work
Quantum Hoare logics. The pioneering work on Hoare logic [Ying 2012; Zhou et al. 2019; Unruh

2021; Lewis et al. 2023] established a good foundation for deductive verification of quantum
programs. In particular, Li and Ying [2017] has proposed a Hoare logic that can specify almost sure
termination of quantum programs, as we also do. However, as in the classical case, Hoare logic does
not scale for more complex programs, due to its very global style of specification. This problem has
been attacked by developing separation logics, as discussed below.

Quantum separation logics. To bring local reasoning to quantum verification, disentanglement has
been proposed as a suitable notion of separation, obtaining Quantum Separation Logic (QSL) [Zhou
et al. 2021; Le et al. 2022; Deng et al. 2024]. As we remarked in § 2, none of the existing QSLs have
achieved all three locality principles we proposed (Fig. 1, § 1) in one logic.
Of particular note is Deng et al. [2024]’s logic, which is the only existing QSL that supports a

probabilistic mixture of assertions ⊕. Unlike our mixing ⊕, modelled as multiset sum, their model of
⊕ is the sum of density matrices, insensitive to global phases and the branching structure introduced
by measurements. Consequently, as discussed in § 2.2, their approach to ⊕ is incompatible with our
basis-locality principle, and a simple extension of their logic cannot achieve that locality.
Also, Su et al. [2024] have recently proposed a separation logic for the modular verification of

algorithms that utilize dirty qubits. Their model is global-phase-insensitive, and thus does not
support our locality principles. In particular, because of the lack of basis-locality, their framework
does not handle cases where dirty qubits are entangled with the input, unlike RapunSL.

Automated verification of quantum programs. Automated verification of quantum programs is a
highly important yet challenging research problem, and various approaches have been explored.
Qbricks [Chareton et al. 2021] demonstrated some degree of automation by employing the path-sum
representation together with Why3 [Filliâtre and Paskevich 2013], a semi-automated verification
platform for functional programs. Qafny [Li et al. 2024b] automatically verifies annotated quantum
programs by translating them into classical separation logic for arrays implemented in Dafny [Leino
and Moskal 2014].15 Fang and Ying [2024] proposed a symbolic execution framework for quantum
programs and applied it for automated verification of quantum error-correction codes.

Particularly relevant to our work is AutoQ 2.0 [Chen et al. 2025]. It is a framework for verifying
Hoare-style assertions on quantum programs with measurement, branching, and loop constructs,
with automation using level-synchronized tree automata [Abdulla et al. 2025]. Much like our

15 The work by Li et al. [2024b] was not cited in the published POPL version, as we became aware of it only after the version
had been finalized.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 6. Publication date: January 2026.

RapunSL: UntanglingQuantum Computing with Separation, Linear Combination and Mixing 6:27

treatment, it represents post-measurement states as a map of non-normalized vectors and employs
reasoning principles similar to RapunSL’s outcome- and basis-locality.

Quantum relational logics. Quantum relational logics [Barthe et al. 2019b; Unruh 2019] verify
relations between program behaviours rather than functional specifications of single programs. For
modularity, relational separation logics have been studied in the classical probabilistic setting [Bao
et al. 2025], but not yet in the quantum setting.

Outcome logics. Notably, the need to talk about a collection of outcomes at once has emerged
before in a completely different context: Outcome Logic [Zilberstein et al. 2023] studied general
reasoning principles about branching effects—i.e., non-deterministic and probabilistic (but not
quantum) computation—when assertions are over the whole collection of possible outcomes. What
we need here is a similar jump, conceptually. Technically, however, there are serious challenges,
as Outcome Logic only considers one layer of locality, while we have to handle three, deeply
interacting, layers. Outcome Separation Logic [Zilberstein et al. 2024] makes some first steps in
incorporating separation of heaps in a language with probabilistic branching, but it uses a very
syntactic approach to framing and does not hint at design principles that might apply more generally.
In RapunSL, we harmonize general framing with the other two connectives. To make the logic
work, in particular, the connective that composes outcomes, mixing, must be non-commutative
and satisfy a strong interchange law with sum.

Quantum programming languages. Quantum control has been actively studied in the form of
qif and symmetric pattern matching [Sabry et al. 2018], and adopted by several quantum lan-
guages [Grattage and Altenkirch 2005; Svore et al. 2018; Bichsel et al. 2020; Hirata and Heunen 2025;
Heunen et al. 2026]. Roughly speaking, a program qif 𝑒 then 𝐶1 else 𝐶0 executes both branches𝐶0
and 𝐶1 under negative or positive quantum control over the qubit 𝑒 . We expect that programs with
such quantum control can be effectively verified using basis-locality of RapunSL.
Also, in light of the no-cloning theorem, some recent quantum languages [Koch et al. 2025;

Hirata and Heunen 2025] adopt ownership types, popularized by Rust [Matsakis and Klock 2014].
We expect that RapunSL can serve as a semantic foundation for such ownership types.

8 Conclusion and Future Work
We proposed RapunSL, the first quantum program logic to unify the three locality principles—
entanglement-locality, outcome-locality, and basis-locality. We proved its soundness and demon-
strated its power by verifying several practical quantum programs.
Although we have provided a pen-and-paper proof of the soundness of our logic, it would be

better to mechanize the proof, as has been done for some quantum program logics [Zhou et al.
2023; Wu et al. 2025]. It would help explore advanced features without the fear of making mistakes.

One important direction for future work is the application of RapunSL for automated verification.
We have started exploring this direction, as discussed in § 6. More specifically, we expect that the
insights from RapunSL can be used to extend AutoQ 2.0 [Chen et al. 2025], discussed in § 7, with
the entanglement-locality principle for more scalable automation.
We are also interested in extending our logic to relational verification. A possible direction for

future work is to adopt the perspective of Bluebell [Bao et al. 2025], which unified unary and
relational reasoning in a single separation logic for probabilistic programs.

Acknowledgments
We would like to thank Yu-Fang Chen, Takeshi Tsukada and Ugo Dal Lago for their insightful
discussions and valuable feedback. This research was supported in part by the Hakubi Project at

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 6. Publication date: January 2026.

6:28 Yusuke Matsushita, Kengo Hirata, Ryo Wakizaka, and Emanuele D’Osualdo

Kyoto University and JSPS KAKENHI Grant Number JP24KJ0133 for the first author, JST SPRING,
Grant Number JPMJSP2110 and JST ACT-X, Grant Number JPMJAX23CT for the third author.

References
Parosh Aziz Abdulla, Yo-Ga Chen, Yu-Fang Chen, Lukáš Holík, Ondřej Lengál, Jyun-Ao Lin, Fang-Yi Lo, and Wei-Lun Tsai.

2025. Verifying Quantum Circuits with Level-Synchronized Tree Automata. Proc. ACM Program. Lang. 9, POPL, Article
32 (Jan. 2025), 31 pages. https://doi.org/10.1145/3704868

Jialu Bao, Simon Docherty, Justin Hsu, and Alexandra Silva. 2021. A Bunched Logic for Conditional Independence. In
Proceedings of the 36th Annual ACM/IEEE Symposium on Logic in Computer Science (Rome, Italy) (LICS ’21). IEEE Press,
Article 13, 14 pages. https://doi.org/10.1109/LICS52264.2021.9470712

Jialu Bao, Emanuele D’Osualdo, and Azadeh Farzan. 2025. Bluebell: An Alliance of Relational Lifting and Independence for
Probabilistic Reasoning. Proc. ACM Program. Lang. 9, POPL, Article 58 (Jan. 2025), 31 pages. https://doi.org/10.1145/
3704894

Gilles Barthe, Justin Hsu, and Kevin Liao. 2019a. A Probabilistic Separation Logic. Proc. ACM Program. Lang. 4, POPL,
Article 55 (Dec. 2019), 30 pages. https://doi.org/10.1145/3371123

Gilles Barthe, Justin Hsu, Mingsheng Ying, Nengkun Yu, and Li Zhou. 2019b. Relational Proofs for Quantum Programs.
Proc. ACM Program. Lang. 4, POPL, Article 21 (Dec. 2019), 29 pages. https://doi.org/10.1145/3371089

Benjamin Bichsel, Maximilian Baader, Timon Gehr, and Martin Vechev. 2020. Silq: A High-Level Quantum Language with
Safe Uncomputation and Intuitive Semantics. In Proceedings of the 41st ACM SIGPLAN Conference on Programming
Language Design and Implementation (London, UK) (PLDI 2020). Association for Computing Machinery, New York, NY,
USA, 286–300. https://doi.org/10.1145/3385412.3386007

Stephen Brookes. 2007. A Semantics for Concurrent Separation Logic. Theor. Comput. Sci. 375, 1–3 (April 2007), 227–270.
https://doi.org/10.1016/j.tcs.2006.12.034

Stephen Brookes and Peter W. O’Hearn. 2016. Concurrent Separation Logic. ACM SIGLOG News 3, 3 (Aug. 2016), 47–65.
https://doi.org/10.1145/2984450.2984457

Christophe Chareton, Sébastien Bardin, François Bobot, Valentin Perrelle, and Benoît Valiron. 2021. An Automated Deductive
Verification Framework for Circuit-building Quantum Programs. In Programming Languages and Systems: 30th European
Symposium on Programming, ESOP 2021, Held as Part of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2021, Luxembourg City, Luxembourg, March 27 – April 1, 2021, Proceedings (Luxembourg City, Luxembourg).
Springer-Verlag, Berlin, Heidelberg, 148–177. https://doi.org/10.1007/978-3-030-72019-3_6

Yu-Fang Chen, Kai-Min Chung, Min-Hsiu Hsieh, Wei-Jia Huang, Ondřej Lengál, Jyun-Ao Lin, and Wei-Lun Tsai. 2025.
AutoQ 2.0: From Verification of Quantum Circuits to Verification of Quantum Programs. In Tools and Algorithms for the
Construction and Analysis of Systems: 31st International Conference, TACAS 2025, Held as Part of the International Joint
Conferences on Theory and Practice of Software, ETAPS 2025, Hamilton, ON, Canada, May 3–8, 2025, Proceedings, Part III
(Hamilton, ON, Canada). Springer-Verlag, Berlin, Heidelberg, 87–108. https://doi.org/10.1007/978-3-031-90660-2_5

Yuxin Deng, Huiling Wu, and Ming Xu. 2024. Local Reasoning About Probabilistic Behaviour for Classical–Quantum
Programs. In Verification, Model Checking, and Abstract Interpretation: 25th International Conference, VMCAI 2024, London,
United Kingdom, January 15–16, 2024, Proceedings, Part II (London, United Kingdom). Springer-Verlag, Berlin, Heidelberg,
163–184. https://doi.org/10.1007/978-3-031-50521-8_8

Eric Dennis, Alexei Kitaev, Andrew Landahl, and John Preskill. 2002. Topological quantum memory. J. Math. Phys. 43, 9 (09
2002), 4452–4505. https://doi.org/10.1063/1.1499754

Wang Fang and Mingsheng Ying. 2024. Symbolic Execution for Quantum Error Correction Programs. Proc. ACM Program.
Lang. 8, PLDI, Article 189 (June 2024), 26 pages. https://doi.org/10.1145/3656419

Jean-Christophe Filliâtre and Andrei Paskevich. 2013. Why3 — Where Programs Meet Provers. In Proceedings of the 22nd
European Conference on Programming Languages and Systems (Rome, Italy) (ESOP’13). Springer-Verlag, Berlin, Heidelberg,
125–128. https://doi.org/10.1007/978-3-642-37036-6_8

Austin G. Fowler and Craig Gidney. 2019. Low Overhead Quantum Computation Using Lattice Surgery. CoRR (Aug. 2019).
arXiv:1808.06709 [quant-ph] https://arxiv.org/abs/1808.06709

Craig Gidney. 2018. Halving the Cost of Quantum Addition. Quantum 2 (June 2018), 74. https://doi.org/10.22331/q-2018-
06-18-74

Jonathan Grattage and Thorsten Altenkirch. 2005. A Functional Quantum Programming Language. In Proceedings. 20th
Annual IEEE Symposium on Logic in Computer Science. IEEE Computer Society, Los Alamitos, CA, USA, 249–258.
https://doi.org/10.1109/LICS.2005.1

Thomas Häner, Martin Roetteler, and Krysta M. Svore. 2017. Factoring Using 2𝑛 + 2 Qubits with Toffoli Based Modular
Multiplication. Quantum Info. Comput. 17, 7-8 (June 2017), 673–684.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 6. Publication date: January 2026.

https://doi.org/10.1145/3704868
https://doi.org/10.1109/LICS52264.2021.9470712
https://doi.org/10.1145/3704894
https://doi.org/10.1145/3704894
https://doi.org/10.1145/3371123
https://doi.org/10.1145/3371089
https://doi.org/10.1145/3385412.3386007
https://doi.org/10.1016/j.tcs.2006.12.034
https://doi.org/10.1145/2984450.2984457
https://doi.org/10.1007/978-3-030-72019-3_6
https://doi.org/10.1007/978-3-031-90660-2_5
https://doi.org/10.1007/978-3-031-50521-8_8
https://doi.org/10.1063/1.1499754
https://doi.org/10.1145/3656419
https://doi.org/10.1007/978-3-642-37036-6_8
https://arxiv.org/abs/1808.06709
https://arxiv.org/abs/1808.06709
https://doi.org/10.22331/q-2018-06-18-74
https://doi.org/10.22331/q-2018-06-18-74
https://doi.org/10.1109/LICS.2005.1

RapunSL: UntanglingQuantum Computing with Separation, Linear Combination and Mixing 6:29

Chris Heunen, Louis Lemonnier, Christopher McNally, and Alex Rice. 2026. Quantum circuits are just a phase. Proc. ACM
Program. Lang. 10, POPL, Article 89 (Jan. 2026). https://doi.org/10.1145/3776731

Kengo Hirata and Chris Heunen. 2025. Qurts: Automatic Quantum Uncomputation by Affine Types with Lifetime. Proc.
ACM Program. Lang. 9, POPL, Article 6 (Jan. 2025), 28 pages. https://doi.org/10.1145/3704842

Dominic Horsman, Austin G. Fowler, Simon Devitt, and Rodney Van Meter. 2012. Surface code quantum computing by
lattice surgery. New Journal of Physics 14, 12 (dec 2012), 123011. https://doi.org/10.1088/1367-2630/14/12/123011

Samin S. Ishtiaq and Peter W. O’Hearn. 2001. BI as an Assertion Language for Mutable Data Structures. In Proceedings of the
28th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (London, United Kingdom) (POPL ’01).
Association for Computing Machinery, New York, NY, USA, 14–26. https://doi.org/10.1145/360204.375719

Mark Koch, Agustín Borgna, Craig Roy, Alan Lawrence, Kartik Singhal, Seyon Sivarajah, and Ross Duncan. 2025. Imperative
Quantum Programming with Ownership and Borrowing in Guppy. CoRR (Oct. 2025). arXiv:2510.13082 [cs.PL] https:
//arxiv.org/abs/2510.13082

Xuan-Bach Le, Shang-Wei Lin, Jun Sun, and David Sanan. 2022. A Quantum Interpretation of Separating Conjunction for
Local Reasoning of Quantum Programs Based on Separation Logic. Proc. ACM Program. Lang. 6, POPL, Article 36 (Jan.
2022), 27 pages. https://doi.org/10.1145/3498697

K. RustanM. Leino andMichał Moskal. 2014. Co-induction Simply. In FM 2014: Formal Methods, Cliff Jones, Pekka Pihlajasaari,
and Jun Sun (Eds.). Springer International Publishing, Cham, 382–398.

Marco Lewis, Sadegh Soudjani, and Paolo Zuliani. 2023. Formal Verification of Quantum Programs: Theory, Tools, and
Challenges. ACMTransactions on QuantumComputing 5, 1, Article 1 (Dec. 2023), 35 pages. https://doi.org/10.1145/3624483

John M. Li, Amal Ahmed, and Steven Holtzen. 2023. Lilac: A Modal Separation Logic for Conditional Probability. Proc. ACM
Program. Lang. 7, PLDI, Article 112 (June 2023), 24 pages. https://doi.org/10.1145/3591226

John M. Li, Jon Aytac, Philip Johnson-Freyd, Amal Ahmed, and Steven Holtzen. 2024a. A Nominal Approach to Probabilistic
Separation Logic. In Proceedings of the 39th Annual ACM/IEEE Symposium on Logic in Computer Science (Tallinn, Estonia)
(LICS ’24). Association for Computing Machinery, New York, NY, USA, Article 55, 14 pages. https://doi.org/10.1145/
3661814.3662135

Liyi Li, Mingwei Zhu, Rance Cleaveland, Alexander Nicolellis, Yi Lee, Le Chang, and Xiaodi Wu. 2024b. Qafny: A Quantum-
Program Verifier. In 38th European Conference on Object-Oriented Programming, ECOOP 2024, Vienna, Austria, September
16-20, 2024 (LIPIcs, Vol. 313), Jonathan Aldrich and Guido Salvaneschi (Eds.). Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 24:1–24:31. https://doi.org/10.4230/LIPICS.ECOOP.2024.24

Yangjia Li and Mingsheng Ying. 2017. Algorithmic Analysis of Termination Problems for Quantum Programs. Proc. ACM
Program. Lang. 2, POPL, Article 35 (Dec. 2017), 29 pages. https://doi.org/10.1145/3158123

Nicholas D. Matsakis and Felix S. Klock, II. 2014. The Rust Language. In Proceedings of the 2014 ACM SIGAda annual conference
on High integrity language technology (Portland, Oregon, USA) (HILT ’14). Association for Computing Machinery, New
York, NY, USA, 103–104. https://doi.org/10.1145/2663171.2663188

Junhong Nie, Wei Zi, and Xiaoming Sun. 2024. Quantum Circuit for Multi-Qubit Toffoli Gate with Optimal Resource. CoRR
(Feb. 2024). arXiv:2402.05053 [quant-ph] https://arxiv.org/abs/2402.05053

Peter W. O’Hearn. 2007. Resources, Concurrency and Local Reasoning. Theor. Comput. Sci. 375, 1–3 (April 2007), 271–307.
https://doi.org/10.1016/j.tcs.2006.12.035

Peter W. O’Hearn and David J. Pym. 1999. The Logic of Bunched Implications. Bull. Symb. Log. 5, 2 (1999), 215–244.
https://doi.org/10.2307/421090

Peter W. O’Hearn, John C. Reynolds, and Hongseok Yang. 2001. Local Reasoning about Programs that Alter Data Structures.
In Proceedings of the 15th International Workshop on Computer Science Logic (CSL ’01). Springer-Verlag, Berlin, Heidelberg,
1–19.

John C. Reynolds. 2002. Separation Logic: A Logic for Shared Mutable Data Structures. In Proceedings of the 17th Annual
IEEE Symposium on Logic in Computer Science (LICS ’02). IEEE Computer Society, USA, 55–74.

Amr Sabry, Benoît Valiron, and Juliana Kaizer Vizzotto. 2018. From Symmetric Pattern-Matching to Quantum Control. In
Foundations of Software Science and Computation Structures, Christel Baier and Ugo Dal Lago (Eds.). Springer International
Publishing, Cham, 348–364.

Peter W. Shor. 1995. Scheme for Reducing Decoherence in Quantum Computer Memory. Physical Review A 52, 4 (Oct. 1995),
R2493–R2496. https://doi.org/10.1103/PhysRevA.52.R2493

Bonan Su, Li Zhou, Yuan Feng, and Mingsheng Ying. 2024. BI-based Reasoning about Quantum Programs with Heap
Manipulations. CoRR (Sept. 2024). arXiv:2409.10153 [quant-ph] https://arxiv.org/abs/2409.10153

Krysta Svore, Alan Geller, Matthias Troyer, John Azariah, Christopher Granade, Bettina Heim, Vadym Kliuchnikov, Mariia
Mykhailova, Andres Paz, and Martin Roetteler. 2018. Q#: Enabling Scalable Quantum Computing and Development with a
High-level DSL. In Proceedings of the Real World Domain Specific Languages Workshop 2018 (Vienna, Austria) (RWDSL2018).
Association for Computing Machinery, New York, NY, USA, Article 7, 10 pages. https://doi.org/10.1145/3183895.3183901

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 6. Publication date: January 2026.

https://doi.org/10.1145/3776731
https://doi.org/10.1145/3704842
https://doi.org/10.1088/1367-2630/14/12/123011
https://doi.org/10.1145/360204.375719
https://arxiv.org/abs/2510.13082
https://arxiv.org/abs/2510.13082
https://arxiv.org/abs/2510.13082
https://doi.org/10.1145/3498697
https://doi.org/10.1145/3624483
https://doi.org/10.1145/3591226
https://doi.org/10.1145/3661814.3662135
https://doi.org/10.1145/3661814.3662135
https://doi.org/10.4230/LIPICS.ECOOP.2024.24
https://doi.org/10.1145/3158123
https://doi.org/10.1145/2663171.2663188
https://arxiv.org/abs/2402.05053
https://arxiv.org/abs/2402.05053
https://doi.org/10.1016/j.tcs.2006.12.035
https://doi.org/10.2307/421090
https://doi.org/10.1103/PhysRevA.52.R2493
https://arxiv.org/abs/2409.10153
https://arxiv.org/abs/2409.10153
https://doi.org/10.1145/3183895.3183901

6:30 Yusuke Matsushita, Kengo Hirata, Ryo Wakizaka, and Emanuele D’Osualdo

Dominique Unruh. 2019. Quantum Relational Hoare Logic. Proc. ACM Program. Lang. 3, POPL, Article 33 (Jan. 2019),
31 pages. https://doi.org/10.1145/3290346

Dominique Unruh. 2021. QuantumHoare Logic with Ghost Variables. In Proceedings of the 34th Annual ACM/IEEE Symposium
on Logic in Computer Science (Vancouver, Canada) (LICS ’19). IEEE Press, Article 47, 13 pages.

Huiling Wu, Yuxin Deng, and Ming Xu. 2025. Local Reasoning about Probabilistic Behaviour for Classical-Quantum
Programs. CoRR (Feb. 2025). arXiv:2308.04741 [cs.PL] https://arxiv.org/abs/2308.04741

Mingsheng Ying. 2012. Floyd–Hoare Logic for Quantum Programs. ACM Trans. Program. Lang. Syst. 33, 6, Article 19 (Jan.
2012), 49 pages. https://doi.org/10.1145/2049706.2049708

Li Zhou, Gilles Barthe, Justin Hsu, Mingsheng Ying, and Nengkun Yu. 2021. A Quantum Interpretation of Bunched Logic &
Quantum Separation Logic. In Proceedings of the 36th Annual ACM/IEEE Symposium on Logic in Computer Science (Rome,
Italy) (LICS ’21). IEEE Press, Article 75, 14 pages. https://doi.org/10.1109/LICS52264.2021.9470673

Li Zhou, Gilles Barthe, Pierre-Yves Strub, Junyi Liu, and Mingsheng Ying. 2023. CoqQ: Foundational Verification of Quantum
Programs. Proc. ACM Program. Lang. 7, POPL, Article 29 (Jan. 2023), 33 pages. https://doi.org/10.1145/3571222

Li Zhou, Nengkun Yu, and Mingsheng Ying. 2019. An Applied Quantum Hoare Logic. In Proceedings of the 40th ACM
SIGPLAN Conference on Programming Language Design and Implementation (Phoenix, AZ, USA) (PLDI 2019). Association
for Computing Machinery, New York, NY, USA, 1149–1162. https://doi.org/10.1145/3314221.3314584

Noam Zilberstein, Derek Dreyer, and Alexandra Silva. 2023. Outcome Logic: A Unifying Foundation for Correctness and
Incorrectness Reasoning. Proc. ACM Program. Lang. 7, OOPSLA1, Article 93 (April 2023), 29 pages. https://doi.org/10.
1145/3586045

Noam Zilberstein, Angelina Saliling, and Alexandra Silva. 2024. Outcome Separation Logic: Local Reasoning for Correctness
and Incorrectness with Computational Effects. Proc. ACM Program. Lang. 8, OOPSLA1, Article 104 (April 2024), 29 pages.
https://doi.org/10.1145/3649821

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 6. Publication date: January 2026.

https://doi.org/10.1145/3290346
https://arxiv.org/abs/2308.04741
https://arxiv.org/abs/2308.04741
https://doi.org/10.1145/2049706.2049708
https://doi.org/10.1109/LICS52264.2021.9470673
https://doi.org/10.1145/3571222
https://doi.org/10.1145/3314221.3314584
https://doi.org/10.1145/3586045
https://doi.org/10.1145/3586045
https://doi.org/10.1145/3649821

Appendix
A More on the Logic
A.1 Standard Connectives
We have the following standard connectives. They satisfy the usual proof rules, presented below:

∀𝑥 ∈ 𝐴. 𝑃𝑥 ≜
⋂

𝑥∈𝐴 𝑃𝑥 ∃𝑥 ∈ 𝐴. 𝑃𝑥 ≜
⋃

𝑥∈𝐴 𝑃𝑥

𝑃0 ∧ 𝑃1 ≜ ∀𝑖 ∈ {0, 1}. 𝑃𝑖 𝑃0 ∨ 𝑃1 ≜ ∃𝑖 ∈ {0, 1}. 𝑃𝑖

¬𝑃 ≜ 𝑃∁ ⌜𝜑⌝ ≜
{
𝑚

�� 𝜑 }
∀𝑥 ∈ 𝐴. (𝑃 ⊢ 𝑄𝑥)
𝑃 ⊢ ∀𝑥 ∈ 𝐴.𝑄𝑥

∀𝑥 ∈ 𝐴. (𝑃𝑥 ⊢ 𝑄)
(∃𝑥 ∈ 𝐴. 𝑃𝑥) ⊢ 𝑄

𝑃 ∧ ¬𝑃 ⊢ 𝑄 𝑄 ⊢ 𝑃 ∨ ¬𝑃
𝜑→ (𝑃 ⊢ 𝑄)
⌜𝜑⌝ ∧ 𝑃 ⊢ 𝑄

A.2 Right Adjoint of SL Connectives
In Remark 7, we mentioned that the connectives ∧, ∗, ⊕ and + all have the right adjoint, written as
→, −∗, −⊕ and −+.

The following give the models for these connectives:16

𝑃→𝑄 ≜ 𝑃∁ ∪𝑄 𝑃 −∗𝑄 ≜
{
𝑚

�� ∀𝑚′ ∈ 𝑃 s.t.𝑚 ·𝑚′ ↓. 𝑚 ·𝑚′ ∈ 𝑄
}

𝑃 −⊕ 𝑄 ≜
{
𝑚

�� ∀𝑚′ ∈ 𝑃 . 𝑚 ⊎𝑚′ ∈ 𝑄 }
𝑃 −+𝑄 ≜

{
𝑚

�� ∀𝑚′ ∈ 𝑃 . ∀𝑟 : 𝑚 �m 𝑚′ s.t.𝑚 +𝑟 𝑚′ ↓. 𝑚 +𝑟 𝑚′ ∈ 𝑄
}

As expected, we have the following adjunction rules.
𝑃 ∧𝑄 ⊢ 𝑅
𝑃 ⊢ 𝑄→ 𝑅

𝑃 ∗𝑄 ⊢ 𝑅
𝑃 ⊢ 𝑄 −∗ 𝑅

𝑃 ⊕ 𝑄 ⊢ 𝑅
𝑃 ⊢ 𝑄 −⊕ 𝑅

𝑃 +𝑄 ⊢ 𝑅
𝑃 ⊢ 𝑄 −+ 𝑅

A.3 Additional Proof Rules
We have the following proof rules for the quantum and classical points-to tokens.

qpoints-swap
(z̄, x, y, z̄′) ↦→ |𝜓 ⟩ ⊣⊢ (z̄, y, x, z̄′) ↦→ SWAPx,y |𝜓 ⟩

qpoints-distinct
x̄ ↦→ |𝜓 ⟩ ⊢ distinct(x̄)

cpoints-disj
a ↦→ 𝑣 ∗ b ↦→ 𝑤 ⊢ a ≠ b

The rule qpoints-swap is for permuting the qubits of a quantum points-to token. Here, SWAP is
the unitary operator that maps |𝑖 𝑗⟩ to | 𝑗𝑖⟩ for each 𝑖, 𝑗 ∈ {0, 1}.

We have the following proof rules for 𝑃 : nonnb, defined in Fig. 16.

emp, x̄ ↦→ |𝜓 ⟩ , a ↦→ 𝑣 : nonnb
𝑄 : nonnb 𝑃 ⊢ 𝑄

𝑃 : nonnb
∀𝑥 ∈ 𝐼 . (𝑃𝑥 : nonnb) 𝐼 ≠ ∅⊕

𝑥∈𝐼 𝑃𝑥 : nonnb
𝑃,𝑄 : nonnb
𝑃 ∗𝑄 : nonnb

𝑃 : nonnb
𝑃 +𝑄 : nonnb

16 We use ↓ to denote definedness (e.g.,𝑚 ·𝑚′ ↓ means that𝑚 ·𝑚′ is defined).

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 6. Publication date: January 2026.

6:32 • Appendix Yusuke Matsushita, Kengo Hirata, Ryo Wakizaka, and Emanuele D’Osualdo

We have the following proof rules for 𝑃 : prob 𝑝 , defined in Fig. 19.

emp, a ↦→ 𝑣 : prob 1 x̄ ↦→ |𝜓 ⟩ : prob ∥ |𝜓 ⟩∥2 𝑄 : prob 𝑝 𝑃 ⊢ 𝑄
𝑃 : prob 𝑝

∀𝑥 . (𝑃𝑥 : prob 𝑝𝑥)⊕
𝑥∈𝐼 𝑃𝑥 : prob (∑𝑥∈𝐼 𝑝𝑥)

𝑃 : prob 𝑝 𝑄 : prob𝑞
𝑃 ∗𝑄 : prob 𝑝𝑞

A.4 More on Tagged Mixing
We have the following derived rules for tagged mixing, other than those in Fig. 17:
bigmix-mono
∀𝑥 ∈ 𝐼 . (𝑃𝑥 ⊢ 𝑄𝑥)⊕
ι

𝑥∈𝐼 𝑃𝑥 ⊢
⊕
ι

𝑥∈𝐼 𝑄𝑥

bigmix-comm
𝑓 : 𝐼 → 𝐽 is a bijection⊕
ι

𝑥∈𝐼 𝑃 𝑓 𝑥 ⊣⊢
⊕
ι

𝑦∈ 𝐽 𝑃𝑦

bigmix-bigmix⊕
ι

𝑥∈𝐼
⊕
κ

𝑦∈ 𝐽 𝑃𝑥,𝑦 ⊣⊢
⊕
κ

𝑦∈ 𝐽
⊕
ι

𝑥∈𝐼 𝑃𝑥,𝑦

nb-bigmix
nb ⊣⊢

⊕
ι

_∈∅

mix-bigmix
𝑃0 0⊕ι1 𝑃1 ⊣⊢

⊕
ι

𝑖∈{0,1} 𝑃𝑖

bigmix-scale
𝛼 (

⊕
ι

𝑥∈𝐼 𝑃𝑥) ⊣⊢
⊕
ι

𝑥∈𝐼 𝛼 𝑃𝑥

∀𝑥 . (𝑃𝑥 : precise)⊕
ι

𝑥∈𝐼 𝑃𝑥 : precise

hoare-bigmix
∀𝑥 ∈ 𝐼 .

{
𝑃𝑥

}
𝐶

{
𝑄𝑥

}{⊕
ι

𝑥∈𝐼 𝑃𝑥
}
𝐶

{⊕
ι

𝑥∈𝐼 𝑄𝑥

} bigmix-frame
(
⊕
ι

𝑥∈𝐼 𝑃𝑥) ∗ 𝑄 ⊢
⊕
ι

𝑥∈𝐼 (𝑃𝑥 ∗𝑄)

bigmix-unframe
𝑄 : precise⊕

ι

𝑥∈𝐼 (𝑃𝑥 ∗𝑄) ⊢ (
⊕
ι

𝑥∈𝐼 𝑃𝑥) ∗ 𝑄

bigmix-frame-frameable
𝑄 : frameable⊕

ι

𝑥∈𝐼 (𝑃𝑥 ∗𝑄) ⊣⊢ (
⊕
ι

𝑥∈𝐼 𝑃𝑥) ∗ 𝑄

∀𝑥 ∈ 𝐼 . (𝑃𝑥 : nonnb) 𝐼 ≠ ∅⊕
ι

𝑥∈𝐼 𝑃𝑥 : nonnb
∀𝑥 . (𝑃𝑥 : prob 𝑝𝑥)⊕
ι

𝑥∈𝐼 𝑃𝑥 : prob (∑𝑥∈𝐼 𝑝𝑥)

A.5 More on Incompatibility Relation
In Fig. 16, we defined the incompatibility relation of resources by

(|𝜓 ⟩ , 𝑆) # (|𝜙⟩ , 𝑆 ′) ≜ ∃a ∈ dom 𝑆 ∩ dom 𝑆 ′ . 𝑆 [a] ≠ 𝑆 ′ [a] .
We state the following property that characterizes it algebraically.

Lemma 9 (Algebraic characterization of incompatibility). For any 𝑥,𝑦 in the resource ring 𝑅 = Res,
the following three conditions are equivalent:
(1) 𝑥 # 𝑦,
(2) ∀𝑘, ℎ ∈ 𝑅. 𝑘 · 𝑥 + ℎ · 𝑦 = ⊥,
(3) ∀𝑧 ∈ 𝑅. (∀𝑘 ∈ 𝑅. 𝑘 · 𝑥 + 𝑧 = ⊥) ∨ (∀ℎ ∈ 𝑅. ℎ · 𝑦 + 𝑧 = ⊥).

Proof. For simplicity, we denote 𝑥 [𝑎] to mean 𝑆 [𝑎] for 𝑥 = (|𝜓 ⟩ , 𝑆).
(1) ⇒ (2). If there exists 𝑎 such that 𝑥 [𝑎] ≠ 𝑦 [𝑎] and both 𝑘 · 𝑥 and ℎ · 𝑦 are defined, then
(𝑘 · 𝑥) [𝑎] = 𝑥 [𝑎] ≠ 𝑦 [𝑎] = (ℎ · 𝑦) [𝑎]. So 𝑘 · 𝑥 + ℎ · 𝑦 is undefined, that is, it equals ⊥.
(2)⇒ (3). In Res, if 𝑥 + 𝑦 ≠ ⊥, then 𝑥 + 𝑧 = ⊥ if and only if 𝑦 + 𝑧 = ⊥ for any 𝑧. Therefore, if

𝑘 · 𝑥 + 𝑧 ≠ ⊥ and 𝑘 · 𝑥 + ℎ · 𝑦 = ⊥, then 𝑧 + ℎ · 𝑦 = ⊥.
(3)⇒ (1). We prove the contrapositive. Let 𝑥 = (X ↦→ |𝜓 ⟩ , 𝑆) and 𝑦 = (Y ↦→ |𝜙⟩ , 𝑆 ′). Since there

is no 𝑎 ∈ Store such that 𝑆 [𝑎] ≠ 𝑆 ′ [𝑎], we can take the supremum 𝑆 ′′ ≜ sup(𝑆, 𝑆 ′). Let us define

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 6. Publication date: January 2026.

RapunSL: UntanglingQuantum Computing with Separation, Linear Combination and Mixing Appendix • 6:33

Z ≜ X∪Y and 𝑧 ≜ (Z ↦→ 0, 𝑆 ′′). Such 𝑧 satisfies 𝑧 = 𝑧+𝑧 = 𝑥 · (Z\X ↦→ 0, 𝑆 ′′\𝑆) = 𝑦 · (Z\Y ↦→ 0, 𝑆 ′′\𝑆 ′)
thus it contradicts (3). □

Lemma 10 (Frame on incompatibility). If 𝑥,𝑦 ∈ 𝑅 satisfy 𝑥 # 𝑦, then 𝑥 +𝑦 = ⊥. In particular, 𝑥 ≠ 𝑦.
Also, for any 𝑧 ∈ 𝑅, 𝑥 · 𝑧 # 𝑦 and 𝑥 + 𝑧 # 𝑦 if the left-hand side is defined.

Proof. Immediate from (2). □

Remark 11. In this paper, we defined the incompatibility relation only for the specific resource ring
Res. This definition extends to any resource ring 𝑅 by adopting (2) ∧ (3) as axioms. These conditions
(2) and (3) are not equivalent in general, so both are required. Lemma 10 holds for arbitrary 𝑅, and
all soundness proof in this subsection can be done with this general definition. We note that the
condition (2) captures the essence of incompatibility, whereas (3) is required for the soundness of
sum-precise and sum-unframe.

A.6 Soundness Proof
We give proofs of the correctness of some non-trivial proof rules.

Proof of bigbmix-frame, Fig. 10. All elements on the left-hand side are of the form (⊎𝑥 𝑚𝑥)·𝑚′
where𝑚𝑥 ∈ 𝑃𝑥 and𝑚′ ∈ 𝑄 . By an easy calculation, this is equivalent to

⊎
𝑥 𝑚1 ·𝑚′, which is on

the right-hand side.17 □

Proof of bigbmix-unframe, Fig. 10. If𝑄 is empty, then both sides are empty. If𝑄 is a singleton
{𝑚}, then the left-hand side is

{⊎
𝑥 𝑚𝑥 ·𝑚

�� 𝑚𝑥 ∈ 𝑃𝑥
}
. Since

⊎
𝑥 𝑚𝑥 ·𝑚 = (⊎𝑥 𝑚𝑥) ·𝑚, this is

included in the right-hand side. □

Proof of sum-assoc, Fig. 15. All elements on the left-hand side are of the form (𝑚1+𝑟𝑚2)+𝑠𝑚3
where𝑚1 ∈ 𝑃 ,𝑚2 ∈ 𝑄 ,𝑚3 ∈ 𝑅, with multiset bijections 𝑟 : 𝑚1 �m 𝑚2 and 𝑠 : (𝑚1 +𝑚2) �m 𝑚3.
Since multiset bijections compose and there are canonical multiset bijections𝑚 �m 𝑚′ �m 𝑚 +ℎ𝑚′
when𝑚 +ℎ 𝑚′ is defined, we have a canonical multiset bijection𝑚1 �m 𝑚2 �m 𝑚3. Along these
bijections, we can define𝑚1+𝑟 ′ (𝑚2+𝑠′𝑚3) with appropriate 𝑟 ′ and 𝑠′, satisfying𝑚1+𝑟 ′ (𝑚2+𝑠′𝑚3) =
(𝑚1 +𝑟 𝑚2) +𝑠 𝑚3. □

Proof of sum-frame, Fig. 15. All elements on the left-hand side are of the form (𝑚1 +𝑟 𝑚2) ·𝑚′
where𝑚1 ∈ 𝑃 ,𝑚2 ∈ 𝑄 , and𝑚′ ∈ 𝑅, with a multiset bijection 𝑟 : 𝑚1 �m 𝑚2. Then,

(𝑚1 +𝑟 𝑚2) ·𝑚′ = {| (𝑥 + 𝑥 ′) · 𝑦 | (𝑥, 𝑥 ′) ∈m 𝑟,𝑦 ∈m 𝑚′ |}
= {| (𝑥 · 𝑦) + (𝑥 ′ · 𝑦) | (𝑥, 𝑥 ′) ∈m 𝑟,𝑦 ∈m 𝑚′ |}
= (𝑚1 ·𝑚′) +𝑟 ′ (𝑚2 ·𝑚′) ∈ RHS,

where 𝑟 ′ is the extended multiset bijection of 𝑟 that relates 𝑥 ·𝑦 and 𝑥 ′ ·𝑦 for each (𝑥, 𝑥 ′) ∈m 𝑟 .18 □

Proof of sum-bigbmix, Fig. 15. All elements on the left-hand side are of the form
⊎

𝑥 𝑚𝑥 +𝑟𝑥 𝑚′𝑥
where 𝑚𝑥 ∈ 𝑃𝑥 and 𝑚′𝑥 ∈ 𝑄𝑥 , with multiset bijections 𝑟𝑥 : 𝑚𝑥 �m 𝑚′𝑥 . Let

⊎
𝑥 𝑟𝑥 : (⊎𝑥 𝑚𝑥) �m

(⊎𝑥 𝑚
′
𝑥) be the multiset bijection that is the union of all the 𝑟𝑥 , i.e., if𝑚𝑥 ,𝑚

′
𝑥 , 𝑟𝑥 : 𝐽𝑥 → Res,(⊎

𝑥
𝑟𝑥

)
:

⊔
𝑥∈𝐼

𝐽𝑥 −→ Res; (𝑥 ∈ 𝐼 , 𝑦 ∈ 𝐽𝑥) ↦−→ (𝑎,𝑏) = 𝑟𝑥 (𝑦).

17 The opposite direction is not generally true when𝑄 is not a singleton set.
18 The opposite direction is not generally true because not all the multiset bijections between𝑚1 ·𝑚′ and𝑚2 ·𝑚′ are of

the form 𝑟 ′ .

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 6. Publication date: January 2026.

6:34 • Appendix Yusuke Matsushita, Kengo Hirata, Ryo Wakizaka, and Emanuele D’Osualdo

Then, we have
⊎

𝑥 𝑚𝑥 +𝑟𝑥 𝑚′𝑥 = {|𝑎 + 𝑏 | 𝑥 ∈ 𝐼 , (𝑎, 𝑏) ∈m 𝑟𝑥 |} = {|𝑎 + 𝑏 | (𝑎,𝑏) ∈m
⊎

𝑥 𝑟𝑥 |} ∈
RHS.19 □

Proof of sum-precise, Fig. 16. Let 𝑃 = {𝑚} and𝑄 = {𝑚′}. Assume that we have 𝑟, 𝑠 : 𝑚 �m 𝑚′

such that𝑚 +𝑟 𝑚′ and𝑚 +𝑠 𝑚′. If (𝑎, 𝑏) ∈m 𝑟 and (𝑎′, 𝑏) ∈m 𝑠 , then 𝑎 + 𝑏 ↓ and 𝑎′ + 𝑏 ↓ hold. From
(3) in Lemma 9, ¬(𝑎 # 𝑎′). Since𝑚 is unambiguous, 𝑎 = 𝑎′. Therefore, 𝑟 = 𝑠 . □

Proof of bigbmix-sum, Fig. 16. All elements on the left-hand side are of the form (⊎𝑥∈𝐼 𝑚𝑥) +𝑟
(⊎𝑥∈𝐼 𝑚

′
𝑥) where 𝑚𝑥 ∈ 𝑃𝑥 , 𝑚′𝑥 ∈ 𝑄𝑥 , and 𝑟 : (⊎𝑥 𝑚𝑥) �m (

⊎
𝑥 𝑚
′
𝑥). Let 𝑚 ≜

⊎
𝑥 𝑚𝑥 and 𝑚′ ≜⊎

𝑥 𝑚
′
𝑥 . This 𝑟 can be regarded as a bijection of the set of indices

⊔
𝑥∈𝐼 𝐽𝑥 and

⊔
𝑥∈𝐼 𝐽

′
𝑥 where

𝑚𝑥 : 𝐽𝑥 → Res and𝑚′𝑥 : 𝐽 ′𝑥 → Res. For each (𝑥, 𝑗) ∈ ⊔
𝑥∈𝐼 𝐽𝑥 , let (𝑦, 𝑗 ′) ≜ 𝑟 (𝑥, 𝑗). Since the sum

𝑚(𝑥, 𝑗)+𝑚′ (𝑟 (𝑥, 𝑗)) =𝑚𝑥 (𝑗)+𝑚′𝑦 (𝑗 ′) is defined, 𝑥 = 𝑦 because of the assumption 𝑥 ≠ 𝑦 ⇒ 𝑃𝑥 # 𝑄𝑦

and Lemma 10. Therefore, for each 𝑖 ∈ 𝐼 , the image of 𝑟 restricted to 𝐽𝑖 is included in 𝐽 ′𝑖 . The bijection
𝑟 must be of the form

⊎
𝑥∈𝐼 𝑟𝑥 :

⊎
𝑥∈𝐼 𝑚𝑥 →

⊎
𝑥∈𝐼 𝑚

′
𝑥 with some multiset bijections 𝑟𝑥 : 𝑚𝑥 �m 𝑚′𝑥 .

Therefore, (⊎𝑥 𝑚𝑥) +𝑟 (
⊎

𝑥 𝑚
′
𝑥) can now be rewritten as

⊎
𝑥 𝑚𝑥 +𝑟𝑥 𝑚′𝑥 , which is in the right-hand

side. □

Proof of sum-unframe, Fig. 16. If 𝑅 is empty, then both sides are empty. Let 𝑅 be {𝑚}. All
elements on the left-hand side are of the form (𝑚1 ·𝑚) +𝑟 (𝑚2 ·𝑚) where𝑚1 ∈ 𝑃 ,𝑚2 ∈ 𝑄 , and 𝑟 :
𝑚1 ·𝑚 �m 𝑚2 ·𝑚. Because of the unambiguity of 𝑃 and 𝑅, all the multiplicities of𝑚1 and𝑚 are
either 0 or 1, so the multisets𝑚1 and𝑚 can be regarded as mere sets of resources. The multiset
bijection 𝑟 can now be regarded as a bijection of the sets𝑚1 ×𝑚 and 𝐼 ×𝑚, where 𝐼 is the set of
indices of𝑚2 : 𝐼 → Res. For each 𝑥 ∈ 𝑚1 and 𝑧 ∈ 𝑚, if (𝑖, 𝑧′) ≜ 𝑟 (𝑥, 𝑧), then 𝑥 · 𝑧 +𝑚2 (𝑖) · 𝑧′ ≠ ⊥
follows because (𝑚1 ·𝑚) +𝑟 (𝑚2 ·𝑚) ↓. Because of the unambiguity of 𝑅, 𝑧 = 𝑧′ follows from (2) in
Lemma 9. Therefore, for each 𝑧 ∈ 𝑚, there is a bijection 𝑟𝑧 ≜ fst ◦ 𝑟 (−, 𝑧) : 𝑚1 → 𝐼 that satisfies
𝑟 (𝑥, 𝑧) = (𝑟𝑧 (𝑥), 𝑧). We prove that this bijection 𝑟𝑧 does not depend on 𝑧. Since𝑚 is non-empty
because of the assumption 𝑅 : nonnb, we choose one 𝑧0 ∈ 𝑚. For each 𝑧 ∈ 𝑚 and 𝑖 = 𝑟𝑧0 (𝑥) = 𝑟𝑧 (𝑥 ′),
both 𝑥 · 𝑧 +𝑚2 (𝑖) · 𝑧 and 𝑥 ′ · 𝑧 +𝑚2 (𝑖) · 𝑧 are defined. Therefore, from (3) in Lemma 9, ¬(𝑥 # 𝑥 ′).
Because 𝑃 is unambiguous, 𝑥 and 𝑥 ′ must be equal, which proves 𝑟−1

𝑧 ◦ 𝑟𝑧0 = id𝑚1 (⇔ 𝑟𝑧0 = 𝑟𝑧). We
can now rewrite (𝑚1 ·𝑚) +𝑟 (𝑚2 ·𝑚) as

(𝑚1 ·𝑚) +𝑟 (𝑚2 ·𝑚) = {|𝑥 · 𝑧 + 𝑦 · 𝑧′ | ((𝑥, 𝑧), (𝑦, 𝑧′)) ∈m 𝑟 |}
= {|𝑥 · 𝑧 +𝑚2 (𝑖) · 𝑧′ | 𝑥 ∈ 𝑚1, 𝑧 ∈ 𝑚, (𝑖, 𝑧′) = 𝑟 (𝑥, 𝑧) |}
= {| (𝑥 +𝑚2 (𝑟𝑧0 (𝑥))) · 𝑧 | 𝑥 ∈ 𝑚1, 𝑧 ∈ 𝑚 |}
= (𝑚1 +𝑟𝑧0

𝑚2) ·𝑚 ∈ RHS. □

Proof of the rest of the rules in Fig. 16. Most rules are straightforward from the definition
and Lemma 10. We prove 𝑃,𝑄 : unambig ⇒ 𝑃 ∗ 𝑄 : unambig as an example. Let𝑚 ·𝑚′ ∈ 𝑃 ∗ 𝑄
where𝑚 ∈ 𝑃 and𝑚′ ∈ 𝑄 , and {|𝑥 · 𝑥 ′, 𝑦 · 𝑦′ |} ⊆m 𝑚 ·𝑚′ where 𝑥,𝑦 ∈m 𝑚 and 𝑥 ′, 𝑦′ ∈m 𝑚′. The
indices of 𝑥 ·𝑥 ′ and𝑦 ·𝑦′ are not the same, thus {|𝑥, 𝑦 |} ⊆m 𝑚 or {|𝑥 ′, 𝑦′ |} ⊆m 𝑚′ from the definition
of𝑚 ·𝑚′. Without loss of generality, we assume {|𝑥, 𝑦 |} ⊆m 𝑚. Then, from Lemma 10, 𝑥 · 𝑥 ′ # 𝑦

and 𝑥 · 𝑥 ′ # 𝑦 · 𝑦′. □

The remaining rules to be shown are the ones regarding Hoare triples. From here on, we denote
𝑐 ⇒ 𝑡 to mean 𝑐 = (𝐶, |𝜓 ⟩ , 𝑆) and 𝑡 = J𝐶K(|𝜓 ⟩ , 𝑆).

19 The opposite direction is not generally true because not all the multiset bijections between
⊎

𝑥 𝑚𝑥 and
⊎

𝑥 𝑚
′
𝑥 are of the

form
⊎

𝑥 𝑟𝑥 .

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 6. Publication date: January 2026.

RapunSL: UntanglingQuantum Computing with Separation, Linear Combination and Mixing Appendix • 6:35

Lemma 12 (Frame on denotations). Let 𝑐 = (𝐶, 𝑎) be a configuration and 𝑡 be a tree such that 𝑐 ⇒ 𝑡 .
If 𝑥 ∈ Res satisfies (𝐶, 𝑎 ·Res 𝑥) ⇒ 𝑡 ′, then the tree 𝑡 ′ is obtained from 𝑡 by replacing all the leaves
Leaf (𝑏) with Leaf (𝑏 ·Res 𝑥).

Proof. By induction on the definition of the denotational semantics. Note that no commands
change the domain of resources, i.e., if 𝑐′ appears as a leaf of J𝐶K(𝑐) where 𝑐 = (X ↦→ |𝜓 ⟩ , 𝑆) and
𝑐′ = (Y ↦→ |𝜓 ⟩ , 𝑆 ′), then X = Y and dom(𝑆) = dom(𝑆 ′). □

Proof of hoare-frame, Fig. 13. Follows from Lemma 12. □

Proof of hoare-bigbmix, Fig. 13. Straightforward from the definition of weakest precondition.
□

Lemma 13 (Adding denotations). Let 𝑐0 and 𝑐1 be two configurations such that 𝑐𝑖 = (𝐶, X ↦→ |𝜓𝑖⟩ , 𝑆).
If 𝑐𝑖 ⇒ 𝑡𝑖 holds for 𝑖 ∈ {0, 1}, then 𝑐0 + 𝑐1 ⇒ 𝑡0 + 𝑡1 holds, where 𝑐0 + 𝑐1 ≜ (𝐶, (X ↦→ |𝜓0⟩ + |𝜓1⟩), 𝑆)
and 𝑡0 + 𝑡1 is the tree of the same structure as 𝑡0 and 𝑡1 (the two agree in the structure) whose leaves
are Leaf (𝑎0 +Res 𝑎1) letting Leaf (𝑎𝑖) be the leaf of 𝑡𝑖 at the same position.

Proof. By induction on the definition of the denotational semantics. This can also be proven
using Theorem 1 and the linearity of the operational semantics. □

Proof of hoare-sum, Fig. 15. Follows from Lemma 13 and the fact that there is a canonical
multiset bijection between Leaves(𝑡) and Leaves(𝑡 ′) whenever 𝑡 and 𝑡 ′ have the same shape. □

Proof of hoare-seq, Fig. 13. Let {|𝑎𝑖 ∈ Res | 𝑖 ∈ 𝐼 |} ∈ 𝑃 and (𝐶, 𝑎𝑖) ⇒ 𝑡𝑖 . Then, we have⊎
𝑖∈𝐼 Leaves(𝑡𝑖) ∈ 𝑄 . We also know that for each 𝑏𝑖 𝑗 ∈m Leaves(𝑡𝑖), ∃𝑡𝑖 𝑗 . (𝐶′, 𝑏𝑖 𝑗) ⇒ 𝑡𝑖 𝑗 , satis-

fying
⊎

𝑖

⊎
𝑗 Leaves(𝑡𝑖 𝑗) ∈ 𝑅. Now, from the definition of the denotational semantics, we have

(𝐶 ;𝐶′, 𝑎𝑖) ⇒ 𝑡𝑖 [𝑡𝑖 𝑗/Leaf (𝑏𝑖 𝑗)]. The multiset of leaves of the tree 𝑡𝑖 [𝑡𝑖 𝑗/Leaf (𝑏𝑖 𝑗)] is
⊎

𝑗 Leaves(𝑡𝑖 𝑗).
Therefore,

⊎
𝑖 Leaves(𝑡𝑖 [𝑡𝑖 𝑗/Leaf (𝑏𝑖 𝑗)]) =

⊎
𝑖

⊎
𝑗 Leaves(𝑡𝑖 𝑗) ∈ 𝑅. □

Proof of hoare-while, Fig. 13. From the definition of the denotation of the while loop, the
following holds.

Jwhile 𝑒 do 𝐶K = Jif 𝑒 then
(
𝐶; while 𝑒 do 𝐶

)
K

Since the denotation of the while loop is defined by the least fixed point, this can be rewritten as

Jwhile 𝑒 do 𝐶K = sup𝑛∈NJif 𝑒 then
(
𝐶; . . . if 𝑒 then

(
𝐶 ; if 𝑒 then loop

)
. . .

)
K

= sup𝑛∈NJ
(
if 𝑒 then 𝐶

)𝑛
, if 𝑒 then loopK

where loop is the infinite loop whose denotation is 𝜆_.Nil, and iter𝑛 ≜
(
if 𝑒 then 𝐶

)𝑛 denotes that
the command

(
if 𝑒 then 𝐶

)
is executed 𝑛 times in sequence. Here, we used the following equation

and the compositionality of the denotational semantics.

Jif 𝑒 then
(
𝐶 ; if 𝑒 then 𝐶′

)
K(|𝜓 ⟩ , 𝑆)

=

{
J𝐶; if 𝑒 then 𝐶′K(|𝜓 ⟩ , 𝑆) if J𝑒K𝑆 = 1
JskipK(|𝜓 ⟩ , 𝑆) otherwise

=

{
J𝐶, if 𝑒 then 𝐶′K(|𝜓 ⟩ , 𝑆) if J𝑒K𝑆 = 1
Jskip, if 𝑒 then 𝐶′K(|𝜓 ⟩ , 𝑆) otherwise

= Jif 𝑒 then 𝐶, if 𝑒 then 𝐶′K(|𝜓 ⟩ , 𝑆).

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 6. Publication date: January 2026.

6:36 • Appendix Yusuke Matsushita, Kengo Hirata, Ryo Wakizaka, and Emanuele D’Osualdo

Let {|𝑎𝑖 ∈ Res | 𝑖 ∈ 𝐼 |} ∈ 𝑃0, and (while 𝑒 do 𝐶, 𝑎𝑖) ⇒ 𝑡𝑖,∞. Then, there exists a sequence of trees
𝑡𝑖,𝑛 such that (iter𝑛, 𝑎𝑖) ⇒ 𝑡𝑖,𝑛 . We define multisets from such trees.

𝑚𝑃
𝑖,0 ≜ {|𝑎𝑖 |}, 𝑚𝑃

𝑖,𝑛+1 ≜ {|𝑏 | 𝑎 ∈m 𝑚𝑅
𝑖,𝑛, 𝑏 ∈m Leaves(J𝐶K(𝑎)) |}

𝑚
𝑄

𝑖,𝑛
≜ {| (|𝜓 ⟩ , 𝑆) | (|𝜓 ⟩ , 𝑆) ∈m 𝑚𝑃

𝑖,𝑛, J𝑒K𝑆 = 0 |}
𝑚𝑅

𝑖,𝑛 ≜ {| (|𝜓 ⟩ , 𝑆) | (|𝜓 ⟩ , 𝑆) ∈m Leaves(𝑡𝑖,𝑛), J𝑒K𝑆 = 1 |}

Note that this is not a recursive definition: the definition of𝑚𝑃 and𝑚𝑄 depends on𝑚𝑅 , but𝑚𝑅

depends only on 𝑡𝑖,𝑛 . We first prove that
⊎

𝑖𝑚
𝑅
𝑖,𝑛 ∈ 𝑅𝑛 by induction on 𝑛. For the base case 𝑛 = 0,

since iter0 = skip, the tree 𝑡𝑖,0 is Leaf (𝑎𝑖). So,
⊎

𝑖𝑚
𝑅
𝑖,0 = {|𝑎𝑖 | 𝑖 ∈ 𝐼 , 𝑎𝑖 = (|𝜓 ⟩ , 𝑆), J𝑒K𝑆 = 1 |} ∈ 𝑅0

since {|𝑎𝑖 | 𝑖 ∈ 𝐼 |} ∈ 𝑃0. For the step case,⊎
𝑖
𝑚𝑅

𝑖,𝑛+1 =
⊎

𝑖
{| (|𝜓 ⟩ , 𝑆) | (|𝜓 ⟩ , 𝑆) ∈m Leaves(𝑡𝑖,𝑛+1), J𝑒K𝑆 = 1 |}

=
⊎

𝑖
{|(|𝜓 ′⟩ , 𝑆 ′) | (|𝜓 ⟩ , 𝑆) ∈m Leaves(𝑡𝑖,𝑛), J𝑒K𝑆 = 1,

(|𝜓 ′⟩ , 𝑆 ′) ∈m Leaves(J𝐶K(|𝜓 ⟩ , 𝑆)), J𝑒K𝑆 ′ = 1|}

=
⊎

𝑖
{| (|𝜓 ′⟩ , 𝑆 ′) | 𝑎 ∈m 𝑚𝑅

𝑖,𝑛, (|𝜓 ′⟩ , 𝑆 ′) ∈m Leaves(J𝐶K(𝑎)), J𝑒K𝑆 ′ = 1 |}

=
⊎

𝑖

⊎
𝑎∈m𝑚𝑅

𝑖,𝑛

{| (|𝜓 ′⟩ , 𝑆 ′) | (|𝜓 ′⟩ , 𝑆 ′) ∈m Leaves(J𝐶K(𝑎)), J𝑒K𝑆 ′ = 1 |}

=
⊎

𝑎∈m
⊎

𝑖 𝑚
𝑅
𝑖,𝑛

{| (|𝜓 ′⟩ , 𝑆 ′) | (|𝜓 ′⟩ , 𝑆 ′) ∈m Leaves(J𝐶K(𝑎)), J𝑒K𝑆 ′ = 1 |}

∈ 𝑅𝑛+1.

The statements
⊎

𝑖𝑚
𝑃
𝑖,𝑛 ∈ 𝑃𝑛 and

⊎
𝑖𝑚

𝑄

𝑖,𝑛
∈ 𝑄𝑛 follow from this.

By an easy induction, one can prove that the leaves of 𝑡𝑖,𝑛 can be represented as𝑚𝑃
𝑖,𝑛⊎

⊎
𝑘<𝑛𝑚

𝑄

𝑖,𝑘
=

𝑚𝑅
𝑖,𝑛 ⊎

⊎
𝑘≤𝑛𝑚

𝑄

𝑖,𝑘
. Therefore, the leaves of J(iter𝑛 ; if 𝑒 then loop)K(𝑎𝑖) are

⊎
𝑘≤𝑛𝑚

𝑄

𝑖,𝑘
. Taking the

supremum of these trees, we conclude that⊎
𝑖∈𝐼

Leaves(𝑡𝑖,∞) =
⊎
𝑖∈𝐼

sup
𝑛∈N

J(iter𝑛 ; if 𝑒 then loop)K(𝑎𝑖) =
⊎

𝑖∈𝐼 ,𝑛∈N
𝑚

𝑄

𝑖,𝑛
∈

⊕
𝑛∈N

𝑄𝑛 . □

A.7 Inner Product and Orthogonality
Finally, to reason about the probability of the sum, we introduce the inner product and orthogonality,
based on elementary linear algebra.

Definition 14 (Inner product). We define the inner product of resources ⟨ , ⟩ : 𝐴 ×𝐴 ⇀ C for each
PCM 𝐴 ∈ {Qstate, Store, Res} as follows.〈

X ↦→ |𝜓 ⟩ , X ↦→ |𝜙⟩
〉
Qstate ≜

〈
|𝜓 ⟩ , |𝜙⟩

〉
= ⟨𝜓 |𝜙⟩

〈
𝑆, 𝑆

〉
Store ≜ 1〈

(X ↦→ |𝜓 ⟩ , 𝑆), (Y ↦→ |𝜙⟩ , 𝑆 ′)
〉
Res ≜

〈
X ↦→ |𝜓 ⟩ , Y ↦→ |𝜙⟩

〉
Qstate ·

〈
𝑆, 𝑆 ′

〉
Store

The inner product is just the usual one on vectors whenever the classical information (including
the set of owned qubits) agrees, and is undefined otherwise.
Just like for the sum + (Fig. 15, § 4.5), we define the inner product on multisets via multiset

bijections 𝑟 and lift it to propositions by collecting the resulting values.

⟨𝑚, 𝑚′ ⟩𝑟 ≜
∑︁
(𝑎,𝑏) ∈m𝑟

⟨𝑎, 𝑏 ⟩ ⟨𝑃, 𝑄 ⟩ ≜
{
⟨𝑚, 𝑚′ ⟩𝑟

��𝑚 ∈ 𝑃, 𝑚′ ∈ 𝑄, 𝑟 : 𝑚 �m 𝑚′
}

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 6. Publication date: January 2026.

RapunSL: UntanglingQuantum Computing with Separation, Linear Combination and Mixing Appendix • 6:37

For utility, we also introduce the predicate ⟨𝑃, 𝑄 ⟩ : 𝛼 to assert that the inner product evaluates to
𝛼 whenever defined:

⟨𝑃, 𝑄 ⟩ : 𝛼 ≜ ⟨𝑃, 𝑄 ⟩ ⊆ {𝛼}. □

Remark 15. The probability predicate can be characterized through the inner product as

𝑃 : prob 𝑝 ⇐⇒ ∀𝑚 ∈ 𝑃 . ⟨𝑚, 𝑚 ⟩id = 𝑝,

where id is the canonical identity multiset bijection. Also, under the constraint 𝑃 : precise, unambig,
𝑃 : prob 𝑝 is equivalent to ⟨𝑃, 𝑃 ⟩ : 𝑝 .

Definition 16 (Orthogonality). The orthogonality 𝑃 ⊥ 𝑄 of SL assertions is defined as follows:

𝑃 ⊥ 𝑄 ≜ ⟨𝑃, 𝑄 ⟩ : 0. □

As an auxiliary notion for reasoning about the inner product and orthogonality, we also introduce
the coherence.

Definition 17 (Coherence). We say 𝑎, 𝑏 ∈ Res are coherent and write 𝑎 ≍≍ 𝑏 if their inner product is
defined, i.e., ⟨𝑎, 𝑏 ⟩ ↓. This is equivalent to 𝑎 + 𝑏 ↓. We say multisets𝑚,𝑚′ ∈ M(Res) are coherent if
their inner product is defined for some multiset bijection 𝑟 , i.e., ∃𝑟 : 𝑚 �m 𝑚′ . ⟨𝑚, 𝑚′ ⟩𝑟 ↓.
The coherence relation 𝑃 ≍≍ 𝑄 for SL assertions is defined as follows:

𝑃 ≍≍ 𝑄 ≜ ∀𝑚 ∈ 𝑃 . ∀𝑚′ ∈ 𝑄. 𝑚 ≍≍𝑚
′ □

We have the following rules for the coherence ≍≍, whose soundness can be proved easily:

x̄ ↦→ |𝜓 ⟩ ≍≍ x̄ ↦→ |𝜙⟩
𝑃 : precise
𝑃 ≍≍ 𝑃

𝑃 ≍≍ 𝑄
𝑄 ≍≍ 𝑃

𝑃 ≍≍ 𝑄 𝑃 ′ ⊢ 𝑃
𝑃 ′ ≍≍ 𝑄

∀𝑥 ∈ 𝐼 .
(
𝑃𝑥 ≍≍ 𝑄

)
(∃𝑥 ∈ 𝐼 . 𝑃𝑥) ≍≍ 𝑄

𝑃 ≍≍ 𝑄 𝑃 ′ ≍≍ 𝑄
′

𝑃 ∗ 𝑃 ′ ≍≍ 𝑄 ∗𝑄 ′
𝑃 ≍≍ 𝑄 𝑃 ′ ≍≍ 𝑄

′

𝑃 + 𝑃 ′ ≍≍ 𝑄 +𝑄 ′
∀𝑥 ∈ 𝐼 . 𝑃𝑥 ≍≍ 𝑄𝑥⊕
𝑥∈𝐼

𝑃𝑥 ≍≍
⊕

𝑥∈𝐼
𝑄𝑥

Now we list the rules for the inner product and orthogonality.

〈
x̄ ↦→ |𝜓 ⟩ , x̄ ↦→ |𝜙⟩

〉
: ⟨𝜓 |𝜙⟩ ⟨𝑃, 𝑄 ⟩ = ⟨𝑄, 𝑃 ⟩

inner-prod-uniqe
𝑃,𝑄 : precise 𝑃 : unambig

∃𝛼 ∈ C. ⟨𝑃, 𝑄 ⟩ : 𝛼

𝛼 ∈ C
⟨𝑃, 𝛼 𝑄 ⟩ = 𝛼 ⟨𝑃, 𝑄 ⟩

inner-prod-sum
⟨𝑃, 𝑄 + 𝑅 ⟩ ⊆ ⟨𝑃, 𝑄 ⟩ + ⟨𝑃, 𝑅 ⟩

inner-prod-sum-exact
𝑃 : precise

⟨𝑃, 𝑄 + 𝑅 ⟩ = ⟨𝑃, 𝑄 ⟩ + ⟨𝑃, 𝑅 ⟩

inner-prod-bigbmix∑︁
𝑥∈𝐼
⟨𝑃𝑥 , 𝑄𝑥 ⟩ ⊆

〈⊕
𝑥∈𝐼

𝑃𝑥 ,
⊕

𝑥∈𝐼
𝑄𝑥

〉
inner-prod-bigbmix-exact

∀𝑥,𝑦 ∈ 𝐼 s.t. 𝑥 ≠ 𝑦. 𝑃𝑥 # 𝑄𝑦∑︁
𝑥∈𝐼
⟨𝑃𝑥 , 𝑄𝑥 ⟩ =

〈⊕
𝑥∈𝐼

𝑃𝑥 ,
⊕

𝑥∈𝐼
𝑄𝑥

〉
inner-prod-frame

∀𝑚 ∈ 𝑃,𝑚′ ∈ 𝑃 ′ .𝑚 ·𝑚′ ↓
⟨𝑃, 𝑄 ⟩ · ⟨𝑃 ′, 𝑄 ′ ⟩ ⊆ ⟨𝑃 ∗ 𝑃 ′, 𝑄 ∗𝑄 ′ ⟩

inner-prod-unframe
𝑃 : unambig 𝑃 ≍≍ 𝑄 ⟨𝑅, 𝑅′ ⟩ : 𝛼

⟨𝑃 ∗ 𝑅, 𝑄 ∗ 𝑅′ ⟩ ⊆ 𝛼 ⟨𝑃, 𝑄 ⟩

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 6. Publication date: January 2026.

6:38 • Appendix Yusuke Matsushita, Kengo Hirata, Ryo Wakizaka, and Emanuele D’Osualdo

orth-prob
𝑃,𝑄 : prob𝑝 𝑃 ⊥ 𝑄 𝛼, 𝛽 ∈ C |𝛼 |2 + |𝛽 |2 = 1

𝛼 𝑃 + 𝛽 𝑄 : prob𝑝

orth-sum
𝑃 ⊥ 𝑅 𝑄 ⊥ 𝑅

𝑃 +𝑄 ⊥ 𝑅

orth-bigbmix
∀𝑥 ∈ 𝐼 . 𝑃𝑥 ⊥ 𝑄𝑥 ∀𝑥,𝑦 ∈ 𝐼 s.t. 𝑥 ≠ 𝑦. 𝑃𝑥 # 𝑄𝑦⊕

𝑥∈𝐼
𝑃𝑥 ⊥

⊕
𝑥∈𝐼

𝑄𝑥

orth-frame
𝑃, 𝑅 : unambig 𝑃 ≍≍ 𝑄 𝑃 ⊥ 𝑄

𝑃 ∗ 𝑅 ⊥ 𝑄 ∗ 𝑅′

We have the coherence side condition 𝑃 ≍≍ 𝑄 for the rules inner-prod-unframe and orth-frame.
Some of the above rules are used in the case study of the Shor code in § B.6.

Before proving the soundness of these rules, we discuss useful properties.

Lemma 18 (Basic properties of the inner product on Res). The following hold for any 𝑎, 𝑏, 𝑐, 𝑑 ∈ Res:

⟨𝑎, 𝑏 ⟩ = ⟨𝑏, 𝑎 ⟩ ⟨1, 𝛼 ⟩ = 𝛼

⟨𝑎 + 𝑏, 𝑐 ⟩ = ⟨𝑎, 𝑐 ⟩ + ⟨𝑏, 𝑐 ⟩ ⟨𝑐, 𝑎 + 𝑏 ⟩ = ⟨𝑐, 𝑎 ⟩ + ⟨𝑐, 𝑏 ⟩

𝑎 ≍≍ 𝑏 =⇒ ⟨𝑎 · 𝑐, 𝑏 · 𝑑 ⟩ = ⟨𝑎, 𝑏 ⟩ · ⟨𝑐, 𝑑 ⟩.

Proof. Immediately derived from the usual vector calculus. □

By combining these rules, we can, for example, prove the anti-linearity of the first argument as
⟨𝛼 𝑎 + 𝛽 𝑏, 𝑐 ⟩ = ⟨𝛼 𝑎, 𝑐 ⟩ + ⟨𝛽 𝑏, 𝑐 ⟩ = ⟨𝛼 · 𝑎, 1 · 𝑐 ⟩ + ⟨𝛽 · 𝑏, 1 · 𝑐 ⟩ = ⟨𝛼, 1 ⟩ · ⟨𝑎, 𝑐 ⟩ + ⟨𝛽, 1 ⟩ · ⟨𝑏, 𝑐 ⟩ =
⟨1, 𝛼 ⟩ · ⟨𝑎, 𝑐 ⟩ + ⟨1, 𝛽 ⟩ · ⟨𝑏, 𝑐 ⟩ = 𝛼 ⟨𝑎, 𝑐 ⟩ + 𝛽 ⟨𝑏, 𝑐 ⟩.

Lemma 19 (More properties on Res andM(Res)). The following hold for any 𝑎, 𝑏, 𝑐 ∈ Res and
𝑚1,𝑚2,𝑚3 ∈ M(Res).
• If 𝑎 ≍≍ 𝑏 and 𝑎 · 𝑐 ↓, then (𝑎 + 𝑏) · 𝑐 ↓.
• If 𝑎 ≍≍ 𝑏 and 𝑎 # 𝑐 , then 𝑏 # 𝑐 .
• If𝑚1 +𝑟 𝑚2 ↓ and𝑚1 ·𝑚3 ↓, then𝑚2 ·𝑚3 ↓.

Proof. Straightforward. □

Now we prove the soundness of the proof rules for the inner product and orthogonality.

Proof of inner-prod-uniqe. This can be proven similarly to sum-precise. □

Proof of inner-prod-sum. An element in the left-hand side can be written as ⟨𝑚, 𝑚1 +𝑟 𝑚2 ⟩𝑟 ′
where𝑚 ∈ 𝑃 ,𝑚1 ∈ 𝑄 , and𝑚2 ∈ 𝑅 with multiset bijections 𝑟 : 𝑚1 �m 𝑚2 and 𝑟 ′ : 𝑚 �m (𝑚1 +𝑟 𝑚2).
From thesemutiset bijections, we obtain a canonical multiset bijection 𝑠 : 𝑚 �m 𝑚1 and 𝑠′ : 𝑚 �m 𝑚2.
Then ⟨𝑚, 𝑚1 +𝑟 𝑚2 ⟩𝑟 ′ = ⟨𝑚, 𝑚1 ⟩𝑠 + ⟨𝑚, 𝑚2 ⟩𝑠′ ∈ RHS. □

Proof of inner-prod-sum-exact. If 𝑃 = {𝑚}, an element in the right-hand side can be written
as ⟨𝑚, 𝑚1 ⟩𝑠 + ⟨𝑚, 𝑚2 ⟩𝑠′ = ⟨𝑚, 𝑚1 +𝑟 𝑚2 ⟩𝑟 ′ ∈ LHS. □

Proof of inner-prod-bigbmix. Any element in the left-hand side is written as
∑

𝑥∈𝐼 ⟨𝑚𝑥 , 𝑚
′
𝑥 ⟩𝑟𝑥 ,

which is equal to
〈⊎

𝑥 𝑚𝑥 ,
⊎

𝑥 𝑚
′
𝑥

〉⊎
𝑥 ∈𝐼 𝑟𝑥

∈ RHS. □

Proof of inner-prod-bigbmix-exact. Let𝑚𝑥 ∈ 𝑃𝑥 and𝑚′𝑥 ∈ 𝑄 . As in the proof of bigbmix-
sum, any multiset bijection 𝑟 between𝑚 ≜

⊎
𝑥 𝑚𝑥 and𝑚′ ≜

⊎
𝑥 𝑚
′
𝑥 that satisfy𝑚 +𝑟 𝑚′ ↓ has the

form
⊎

𝑥 𝑟𝑥 for some 𝑟𝑥 : 𝑚𝑥 �m 𝑚′𝑥 . Therefore, ⟨
⊎

𝑥 𝑚𝑥 ,
⊎

𝑥 𝑚
′
𝑥 ⟩𝑟 =

∑
𝑥

〈
𝑚𝑥 , 𝑚

′
𝑥

〉
𝑟𝑥
∈ LHS. □

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 6. Publication date: January 2026.

RapunSL: UntanglingQuantum Computing with Separation, Linear Combination and Mixing Appendix • 6:39

Proof of inner-prod-frame. Any element in the left-hand side can be written as ⟨𝑚1 +𝑟
𝑚2, 𝑚3 +𝑠 𝑚4 ⟩ where𝑚1 ∈ 𝑃 ,𝑚2 ∈ 𝑄 ,𝑚3 ∈ 𝑃 ′, and𝑚4 ∈ 𝑄 ′ with multiset bijections 𝑟 : 𝑚1 �m 𝑚2
and 𝑠 : 𝑚3 �m 𝑚4. Thanks to the assumption,𝑚1 ·𝑚3 is defined. Because𝑚1+𝑟𝑚3 and𝑚2+𝑠𝑚4 are de-
fined,𝑚2 ·𝑚4 ↓ follows from Lemma 19. There is an inducedmultiset bijection 𝑟×𝑠 : 𝑚1 ·𝑚3 �m 𝑚2 ·𝑚4
that satisfies

⟨𝑚1 +𝑟 𝑚2, 𝑚3 +𝑠 𝑚4 ⟩ = {| ⟨𝑎, 𝑏 ⟩ · ⟨𝑐, 𝑑 ⟩ | (𝑎, 𝑏) ∈m 𝑟, (𝑐, 𝑑) ∈m 𝑠 |}
= {| ⟨𝑎 · 𝑐, 𝑏 · 𝑑 ⟩ | (𝑎 · 𝑐, 𝑏 · 𝑑) ∈m 𝑟 × 𝑠 |} ∈ RHS. □

Proof of inner-prod-unframe. Let ⟨𝑚 ·𝑚1, 𝑚
′ ·𝑚2 ⟩𝑟 be an element of left-hand side where

𝑚 ∈ 𝑃 , 𝑚′ ∈ 𝑄 , 𝑚1 ∈ 𝑅, 𝑚2 ∈ 𝑅′, and 𝑟 : 𝑚 ·𝑚1 �m 𝑚′ ·𝑚2. Since 𝑃 ≍≍ 𝑄 , there exists some
multiset bijection 𝑠0 : 𝑚 �m 𝑚′ such that 𝑚 +𝑠0 𝑚

′ ↓. Since 𝑃 is unambiguous, similarly to the
proof of sum-precise, we can prove that such 𝑠0 is unique. From Lemma 19, for any 𝑎 ∈m 𝑚,
𝑏 ∈m 𝑚′, (𝑎, 𝑏) ∈m 𝑠0 or 𝑎 # 𝑏. Because ⟨𝑚 ·𝑚1, 𝑚

′ ·𝑚2 ⟩𝑟 is defined, for any (𝑎 · 𝑐, 𝑏 · 𝑑) ∈m 𝑟 ,
⟨𝑎 · 𝑐, 𝑏 · 𝑑 ⟩ ↓, which is equivalent to say 𝑎 · 𝑐 + 𝑏 · 𝑑 ↓. So ¬(𝑎 # 𝑏), thus (𝑎, 𝑏) ∈m 𝑠0. Therefore,
(𝑎 · 𝑐, 𝑏 ·𝑑) ∈m 𝑟 =⇒ (𝑎,𝑏) ∈m 𝑠0, and ⟨𝑎 · 𝑐, 𝑏 ·𝑑 ⟩ = ⟨𝑎, 𝑏 ⟩ · ⟨𝑐, 𝑑 ⟩. For each 𝑎 ∈m 𝑚, let 𝑟𝑎 be the
multiset bijection between𝑚1 and𝑚2 such that (𝑎 · 𝑐, 𝑏 · 𝑑) ∈m 𝑟 =⇒ (𝑐, 𝑑) ∈m 𝑟𝑎 Then∑︁

(𝑎·𝑐,𝑏 ·𝑑) ∈m𝑟

〈
𝑎 · 𝑐, 𝑏 · 𝑑

〉
=

∑︁
(𝑎,𝑏) ∈m𝑠0

∑︁
(𝑐,𝑑) ∈m𝑟𝑎

〈
𝑎, 𝑏

〉
·
〈
𝑐, 𝑑

〉
=

∑︁
(𝑎,𝑏) ∈m𝑠0

〈
𝑎, 𝑏

〉
·
∑︁
(𝑐,𝑑) ∈m𝑟𝑎

〈
𝑐, 𝑑

〉
=

∑︁
(𝑎,𝑏) ∈m𝑟0

𝛼
〈
𝑎, 𝑏

〉
= 𝛼

〈
𝑚, 𝑚′

〉
𝑟0
∈ 𝛼

〈
𝑃, 𝑄

〉
. □

Proof of orth-prob. Let𝑚 ∈ 𝑃 ,𝑚′ ∈ 𝑄 , and 𝑟 : 𝑚 �m 𝑚′. Then〈
𝛼𝑚 +𝑟 𝛽𝑚′, 𝛼𝑚 +𝑟 𝛽𝑚′

〉
id = 𝛼𝛼 ⟨𝑚, 𝑚 ⟩id + 𝛼𝛽 ⟨𝑚, 𝑚′ ⟩𝑟 + 𝛽𝛼 ⟨𝑚′, 𝑚 ⟩𝑟 −1 + 𝛽𝛽 ⟨𝑚′, 𝑚′ ⟩id

= |𝛼 |2 + 0 + 0 + |𝛽 |2 = 1. □

Proof of orth-sum. Follows from inner-prod-sum. □

Proof of orth-bigbmix. Follows from inner-prod-bigbmix-exact. □

Proof of orth-frame. Let𝑚 ∈ 𝑃 ,𝑚′ ∈ 𝑄 ,𝑚1 ∈ 𝑅,𝑚2 ∈ 𝑅′, and 𝑟 : 𝑚 ·𝑚1 �m 𝑚′ ·𝑚2, such
that ⟨𝑚 ·𝑚1, 𝑚

′ ·𝑚2 ⟩𝑟 ↓. Similarly to the proof of inner-prod-unframe, we can prove that, there
exist 𝑠0 : 𝑚 �m 𝑚′ and 𝑟𝑎 : 𝑚1 �m 𝑚2 such that (𝑎 · 𝑐, 𝑏 · 𝑑) ∈m 𝑟 =⇒ (𝑎,𝑏) ∈m 𝑠0 ∧ (𝑐, 𝑑) ∈m 𝑟𝑎 ,
𝑚 +𝑠0 𝑚

′ ↓, and𝑚1 +𝑟𝑎 𝑚2 ↓. Moreover, since 𝑅 is unambiguous, {𝑠′ : 𝑚1 �m 𝑚2 | 𝑚1 +𝑠′ 𝑚2 ↓} is a
singleton or empty. If not empty, we denote the unique element as 𝑠′0, and then∑︁

(𝑎·𝑐,𝑏 ·𝑑) ∈m𝑟

〈
𝑎 · 𝑐, 𝑏 · 𝑑

〉
=

∑︁
(𝑎,𝑏) ∈m𝑠0

〈
𝑎, 𝑏

〉
·
∑︁
(𝑐,𝑑) ∈m𝑟𝑎

〈
𝑐, 𝑑

〉
=

∑︁
(𝑎,𝑏) ∈m𝑠0

〈
𝑎, 𝑏

〉
·
∑︁
(𝑐,𝑑) ∈m𝑠′0

〈
𝑐, 𝑑

〉
∈ {0}.

If such 𝑠′0 does not exist, then𝑚 =𝑚′ = {| |}. The orthogonality is trivial in this case. □

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 6. Publication date: January 2026.

6:40 • Appendix Yusuke Matsushita, Kengo Hirata, Ryo Wakizaka, and Emanuele D’Osualdo

B More on Case Studies
B.1 DirtyQubit: Implementation of CCCX by Toffoli Gates
Here we give the details of § 5.1.

The CCCX gate is a 4-qubit gate that computes ret←ret⊻ (x∧y∧z) where ⊻ denotes exclusive
OR. We can implement this CCCX gate using only CCX gates (computing ret←ret⊻ (x∧ y), also
called Toffoli gates) with a dirty auxiliary qubit tmp, a qubit whose state is unknown, as follows:

dCCCX[x, y, z, tmp, ret] ≜ CCX[z, tmp, ret];CCX[x, y, tmp];CCX[z, tmp, ret];CCX[x, y, tmp] .
The CCCX gate and the circuit dCCCX are visualized in Fig. 20.

We would like to prove the equivalence between CCCX and dCCCX in our logic in any context,
i.e., with any other qubits entangled with the qubits involved. We show the following Hoare triple:{
(x, y, z, tmp, ret, w̄) ↦→ |𝜓 ⟩

}
dCCCX

{
(x, y, z, tmp, ret, w̄) ↦→ (CCCXx,y,z,ret ⊗ idtmp,w̄) |𝜓 ⟩

}
.

To this end, we first prove the following Hoare triple for any classical state 𝑖, 𝑗, 𝑘, ℓ,𝑚 ∈ {0, 1}:{
(x, y, z, tmp, ret) ↦→ |𝑖 𝑗𝑘ℓ𝑚⟩

}
dCCCX

{
(x, y, z, tmp, ret) ↦→ |𝑖 𝑗𝑘ℓ (𝑚 ⊻ (𝑖 ∧ 𝑗 ∧ 𝑘))⟩

}
.

This can be done as follows. Here, we simply write ∧ as multiplication. Note that this part is no
different from symbolic execution of the usual classical bitwise operations.{

x ↦→ |𝑖⟩ ∗ y ↦→ | 𝑗⟩ ∗ z ↦→ |𝑘⟩ ∗ tmp ↦→ |ℓ⟩ ∗ ret ↦→ |𝑚⟩
}

CCX[z, tmp, ret]{
x ↦→ |𝑖⟩ ∗ y ↦→ | 𝑗⟩ ∗ z ↦→ |𝑘⟩ ∗ tmp ↦→ |ℓ⟩ ∗ ret ↦→ |𝑚 ⊻ 𝑘ℓ⟩

}
CCX[x, y, tmp]{
x ↦→ |𝑖⟩ ∗ y ↦→ | 𝑗⟩ ∗ z ↦→ |𝑘⟩ ∗ tmp ↦→ |ℓ ⊻ 𝑖 𝑗⟩ ∗ ret ↦→ |𝑚 ⊻ 𝑘ℓ⟩

}
CCX[z, tmp, ret]{
x ↦→ |𝑖⟩ ∗ y ↦→ | 𝑗⟩ ∗ z ↦→ |𝑘⟩ ∗ tmp ↦→ |ℓ ⊻ 𝑖 𝑗⟩ ∗ ret ↦→ |𝑚 ⊻ 𝑘ℓ ⊻ 𝑘 (ℓ ⊻ 𝑖 𝑗)⟩

}{
x ↦→ |𝑖⟩ ∗ y ↦→ | 𝑗⟩ ∗ z ↦→ |𝑘⟩ ∗ tmp ↦→ |ℓ ⊻ 𝑖 𝑗⟩ ∗ ret ↦→ |𝑚 ⊻ 𝑖 𝑗𝑘⟩

}
CCX[x, y, tmp]{
x ↦→ |𝑖⟩ ∗ y ↦→ | 𝑗⟩ ∗ z ↦→ |𝑘⟩ ∗ tmp ↦→ |ℓ ⊻ 𝑖 𝑗 ⊻ 𝑖 𝑗⟩ ∗ ret ↦→ |𝑚 ⊻ 𝑖 𝑗𝑘⟩

}{
x ↦→ |𝑖⟩ ∗ y ↦→ | 𝑗⟩ ∗ z ↦→ |𝑘⟩ ∗ tmp ↦→ |ℓ⟩ ∗ ret ↦→ |𝑚 ⊻ 𝑖 𝑗𝑘⟩

}
Now that we have proven the Hoare triple for the concrete state |𝑖 𝑗𝑘ℓ𝑚⟩, we can generalize it to
any quantum state |𝜓 ⟩ as follows:

∀𝑖, 𝑗, 𝑘, ℓ,𝑚 ∈ {0, 1}.{
(x, y, z, tmp, ret) ↦→ |𝑖 𝑗𝑘ℓ𝑚⟩

}
dCCCX

{
(x, y, z, tmp, ret) ↦→ (CCCXx,y,z,ret ⊗ idtmp) |𝑖 𝑗𝑘ℓ𝑚⟩

}
∀𝑖, 𝑗, 𝑘, ℓ,𝑚 ∈ {0, 1}.{

(x, y, z, tmp, ret) ↦→ 𝛼𝑖 𝑗𝑘ℓ𝑚 |𝑖 𝑗𝑘ℓ𝑚⟩ ∗ w̄ ↦→
��𝜓𝑖 𝑗𝑘ℓ𝑚

〉 }
dCCCX{

(x, y, z, tmp, ret) ↦→ (CCCXx,y,z,ret ⊗ idtmp)𝛼𝑖 𝑗𝑘ℓ𝑚 |𝑖 𝑗𝑘ℓ𝑚⟩ ∗ w̄ ↦→
��𝜓𝑖 𝑗𝑘ℓ𝑚

〉 }
(17)

{
(x, y, z, tmp, ret, w̄) ↦→ ∑

𝑖, 𝑗,𝑘,ℓ,𝑚 𝛼𝑖 𝑗𝑘ℓ𝑚 |𝑖 𝑗𝑘ℓ𝑚⟩
��𝜓𝑖 𝑗𝑘ℓ𝑚

〉 }
dCCCX{

(x, y, z, tmp, ret, w̄) ↦→ (CCCXx,y,z,ret ⊗ idtmp,w̄)
∑

𝑖, 𝑗,𝑘,ℓ,𝑚 𝛼𝑖 𝑗𝑘ℓ𝑚 |𝑖 𝑗𝑘ℓ𝑚⟩
��𝜓𝑖 𝑗𝑘ℓ𝑚

〉 } (16)

We first use hoare-frame to add the auxiliary qubits w̄ ↦→
��𝜓𝑖 𝑗𝑘ℓ𝑚

〉
and the global phase 𝛼𝑖 𝑗𝑘ℓ𝑚

in the pre/postconditions at step (17). Finally, we use hoare-sum to sum over all 𝑖 𝑗𝑘ℓ𝑚 ∈ {0, 1}
to obtain the last line step (16). We used the linearity of the CCCX gate to commute the CCCX
gate with the sum

∑
𝑖, 𝑗,𝑘,ℓ,𝑚 and the global phase 𝛼𝑖 𝑗𝑘ℓ𝑚 . Since the choice of 𝛼𝑖 𝑗𝑘ℓ𝑚 and

��𝜓𝑖 𝑗𝑘ℓ𝑚

〉
is

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 6. Publication date: January 2026.

RapunSL: UntanglingQuantum Computing with Separation, Linear Combination and Mixing Appendix • 6:41

arbitrary, and every quantum state can be written in the form
∑

𝑖, 𝑗,𝑘,ℓ,𝑚 𝛼𝑖 𝑗𝑘ℓ𝑚 |𝑖 𝑗𝑘ℓ𝑚⟩
��𝜓𝑖 𝑗𝑘ℓ𝑚

〉
, we

conclude that the Hoare triple holds for any quantum state |𝜓 ⟩.

B.2 Program with Measurements: EPR Paradox
The EPR paradox is a famous quantum phenomenon that shows that the measurement results of
two entangled qubits are correlated, no matter how far apart the two qubits are. The Bell state or
EPR pair is a state of 2-qubits (x and y) written as 1√

2
(|00⟩ + |11⟩). We suppose that those entangled

qubits are shared between Alice and Bob. If Alice measures her qubit x and Bob measures his qubit
y, the EPR paradox states that their measurement results agree with probability 1, even though the
outcomes are not determined prior to measurement. The program can be written as follows, where
the Bell state is prepared in the first step:

EPRa,b,r [x, y] ≜ Bell[x, y]; a←MZ [x]; b←MZ [y]; r←a ⊻ b.

The classical boolean variable r is added to the program to indicate the difference between the
measurement results of Alice and Bob. Therefore, the correctness of the program can be specified
as the following assertion:

∃ 𝑃 : frameable, prob 1, 𝑄 : frameable, prob 0.{
(x, y) ↦→ |00⟩

}a,b,r
EPRa,b,r [x, y]

{
(r ↦→ 0 ∗ 𝑃) ⊕ (r ↦→ 1 ∗𝑄)

}
.

This assertion can be proved as follows, setting 𝑅𝑘,ℓ ≜ a ↦→ 𝑘 ∗ b ↦→ ℓ ∗ (x, y) ↦→ |𝑘ℓ⟩:{
(x, y) ↦→ |00⟩

}a,b,r
Bell[x, y]

{ 1√
2

∑
𝑖=0,1 (x, y) ↦→ |𝑖𝑖⟩

}a,b,r
a←MZ [x]

{ 1√
2

⊕
𝑖=0,1

a ↦→ 𝑖 ∗ (x, y) ↦→ |𝑖𝑖⟩
}b,r

b←MZ [y]
{ 1√

2

⊕
𝑖=0,1

⊕
𝑗=0,1

𝛿𝑖 𝑗 ∗ a ↦→ 𝑖 ∗ b ↦→ 𝑖 ∗ (x, y) ↦→ |𝑖𝑖⟩
}r{ (

1√
2

⊕
𝑘=0,1

𝑅𝑘,𝑘

)
⊕

(
0 ·

⊕
𝑘=0,1

𝑅𝑘,¬𝑘
) }r

r←a ⊻ b{ (
1√
2

⊕
𝑘=0,1

r ↦→ 0 ∗ 𝑅𝑘,𝑘
)
⊕

(
0 ·

⊕
𝑘=0,1

r ↦→ 1 ∗ 𝑅𝑘,¬𝑘
) }

{ (
r ↦→ 0 ∗ 1√

2

⊕
𝑘=0,1

𝑅𝑘,𝑘

)
⊕

(
r ↦→ 1 ∗ 0 ·

⊕
𝑘=0,1

𝑅𝑘,¬𝑘
) }

.

We can finally set 𝑃 ≜ 1√
2

⊕
𝑘=0,1 𝑅𝑘,𝑘 and 𝑄 ≜ 0 ·

⊕
𝑘=0,1 𝑅𝑘,¬𝑘 . Note that 𝑃 : prob 1 holds because

𝑅𝑘,ℓ : prob 1 and
(1√

2

)2 · (1 + 1) = 1.

B.3 Quantum Teleportation
Here we give the details of § 5.2.

Quantum teleportation is a protocol that allows one to send the state of a qubit |𝜓 ⟩ from Alice to
Bob using only classical communication and pre-shared entangled qubits. The protocol is written

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 6. Publication date: January 2026.

6:42 • Appendix Yusuke Matsushita, Kengo Hirata, Ryo Wakizaka, and Emanuele D’Osualdo

as the following circuit:

|𝜓 ⟩

|0⟩

|0⟩ |𝜓 ⟩

x
Alice

a

y
Bell

b

z Boba,b

In our logic, the correctness of the teleportation program can be specified as follows:

∃ 𝑃 : frameable, prob 1. ∀ |𝜓 ⟩ .{
x ↦→ |𝜓 ⟩ ∗ y ↦→ |0⟩ ∗ z ↦→ |0⟩

}a,b
Teleporta,b [x, y, z]

{
z ↦→ |𝜓 ⟩ ∗ 𝑃

}
.

The specification states that the final state of the qubit z will be the same as the initial state of the
qubit x.

The first step of the protocol is to distribute the entangled qubits y and z to Alice and Bob. The
specification of this preparation step is as follows:{

y ↦→ |0⟩ ∗ z ↦→ |0⟩
}
Bell[y, z]

{
(y, z) ↦→ 1√

2
(|00⟩ + |11⟩)

}
.

Then, Alice performs the following program to generate the classical bits a and b that will be sent
to Bob:

Alicea,b [x, y] =
x

y

H a

b
= CX[x, y]; H[x]; a←MZ [x]; b←MZ [y] .

Finally, Bob receives the classical bits a and b from Alice, and performs the following program to
recover the state |𝜓 ⟩:

Boba,b [z] = z if b then X if a then Z = if b then X[z]; if a then Z[z] .

We prove the correctness of the protocol modularly, i.e., we prove the specifications of Alice
and Bob separately, and then combine them to prove the specification of the whole teleportation
program. We first prove the specification of Alice assuming the inputs are in the classical state |𝑥𝑖⟩
for 𝑥, 𝑖 ∈ {0, 1}:{

(x, y) ↦→ |𝑥𝑖⟩
}a,b

Alicea,b [x, y]
{ 1√

2

⊕a,b
(−1)𝑥∧a 𝛿𝑥⊻𝑖,b · (x, y) ↦→ |ab⟩

}
.

This proof can be done symbolically as follows:{
(x, y) ↦→ |𝑥𝑖⟩

}a,b
CX[x, y]

{
(x, y) ↦→ |𝑥 (𝑥 ⊻ 𝑖)⟩

}a,b
H[x]

{
1√
2

∑︁
𝑘=0,1
(−1)𝑥∧𝑘 ∗ (x, y) ↦→ |𝑘 (𝑥 ⊻ 𝑖)⟩

}a,b
a←MZ [x]

{
1√
2

⊕a
(−1)𝑥∧a ∗ (x, y) ↦→ |a(𝑥 ⊻ 𝑖)⟩

}b
b←MZ [y]

{
1√
2

⊕a,b
(−1)𝑥∧a · 𝛿 (𝑥⊻𝑖),b ∗ (x, y) ↦→ |ab⟩

}
.

Note that we are also identifying the classical variables a and 𝑏 with the boolean values they store.
We can also prove the following specification of Bob in a straightforward way:{

z ↦→ |𝑖⟩ ∗ a ↦→ 𝑎 ∗ b ↦→ 𝑥 ⊻ 𝑖
}
Boba,b [z]

{
(−1)𝑥∧𝑎 z ↦→ |𝑥⟩

}
.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 6. Publication date: January 2026.

RapunSL: UntanglingQuantum Computing with Separation, Linear Combination and Mixing Appendix • 6:43

By combining the above specifications, we prove the following specification of the whole teleporta-
tion program for the classical input |𝑥⟩ for 𝑥 ∈ {0, 1}:

∃ 𝑃 : frameable, prob 1.
{
x ↦→ |𝑥⟩ ∗ y ↦→ |0⟩ ∗ z ↦→ |0⟩

}a,b
Teleporta,b [x, y, z]

{
z ↦→ |𝑥⟩ ∗ 𝑃

}
.

We can prove this by the following derivation:{
x ↦→ |𝑥⟩ ∗ (y, z) ↦→ |00⟩

}a,b
Bell[y, z]{
x ↦→ |𝑥⟩ ∗ (y, z) ↦→ 1√

2
(|00⟩ + |11⟩)

}a,b { 1√
2

∑︁
𝑖=0,1

x ↦→ |𝑥⟩ ∗ (y, z) ↦→ |𝑖𝑖⟩
}a,b

Alicea,b [x, y]{
1
2

∑︁
𝑖=0,1

⊕a,b
(−1)𝑥∧a 𝛿 (𝑥⊻𝑖),b · (x, y) ↦→ |ab⟩ ∗ z ↦→ |𝑖⟩

}
Boba,b [z]{

1
2

∑︁
𝑖=0,1

⊕a,b
𝛿 (𝑥⊻𝑖),b · (x, y) ↦→ |ab⟩ ∗ z ↦→ |𝑥⟩

}
{

1
2

⊕a,b ∑︁
𝑖=0,1

𝛿 (𝑥⊻𝑖),b · (x, y) ↦→ |𝑎b⟩ ∗ z ↦→ |𝑥⟩
}

{
1
2

⊕a,b
(x, y) ↦→ |𝑎b⟩ ∗ z ↦→ |𝑥⟩

} {
z ↦→ |𝑥⟩ ∗

⊕a,b
(x, y) ↦→ 1

2 |𝑎𝑏⟩
}
.

Now we can set 𝑃 ≜
⊕a,b (x, y) ↦→ 1

2 |ab⟩ because it is frameable and prob 1. In the general case,
the input state of x can be any quantum state |𝜓 ⟩ = 𝛼0 |0⟩ + 𝛼1 |1⟩. The Hoare triple we have just
proved can be immediately generalized using hoare-scale and hoare-sum:

∀𝑥 .
{
x ↦→ |𝑥⟩ ∗ (y, z) ↦→ |00⟩

}a,b
Teleporta,b [x, y, z]

{
z ↦→ |𝑥⟩ ∗ 𝑃

}
∀𝑥 .

{
x ↦→ 𝛼𝑥 |𝑥⟩ ∗ (y, z) ↦→ |00⟩

}a,b
Teleporta,b [x, y, z]

{
z ↦→ 𝛼𝑥 |𝑥⟩ ∗ 𝑃

} hoare-scale{
x ↦→ |𝜓 ⟩ ∗ (y, z) ↦→ |00⟩

}a,b
Teleporta,b [x, y, z]

{
z ↦→ |𝜓 ⟩ ∗ 𝑃

} hoare-sum

B.4 Lattice Surgery: Implementation of CNOT with Measurements
Here we give the details of § 5.3.

Lattice surgery is a technique for fault-tolerant quantum computing that uses surface codes [Den-
nis et al. 2002]. In lattice surgery, the CNOT gate is implemented without using two-qubit gates,
but using only two-qubit measurements, as shown in Fig. 2. The right-hand side circuit mCNOT
implements the CNOT gate using two 2-qubit measurements,MXX andMZZ, and some single-qubit
gates with an auxiliary qubit y initialized to |0⟩. The program mCNOTι,κ,λ [x, y, z] for the circuit
has been given in § 5.3. We want to formally prove that this circuit indeed implements the CNOT
gate. That is, we want to prove the following specification:

∃ 𝑃 : frameable, prob 1. ∀ |𝜓 ⟩ .{
(x, z) ↦→ |𝜓 ⟩ ∗ y ↦→ |0⟩

}ι,κ,λ
mCNOTι,κ,λ [x, y, z]

{
(x, z) ↦→ CX |𝜓 ⟩ ∗ 𝑃

}
.

The specification of 2-qubit measurementsMXX andMZZ is given as follows.
∀ 𝑠 ∈ {+,−}.

{
(x, y) ↦→ |𝑠𝑠⟩

}
Ma

XX [x, y]
{
(x, y) ↦→ |𝑠𝑠⟩ 0⊕a1 (x, y) ↦→ 0

}
∀ 𝑠, 𝑡 ∈ {+,−} s.t. 𝑠 ≠ 𝑡 .

{
(x, y) ↦→ |𝑠𝑡⟩

}
Ma

XX [x, y]
{
(x, y) ↦→ 0 0⊕a1 (x, y) ↦→ |𝑠𝑡⟩

}
∀ 𝑖 ∈ {0, 1}.

{
(x, y) ↦→ |𝑖𝑖⟩

}
Ma

ZZ [x, y]
{
(x, y) ↦→ |𝑖𝑖⟩ 0⊕a1 (x, y) ↦→ 0

}
∀ 𝑖, 𝑗 ∈ {0, 1} s.t. 𝑖 ≠ 𝑗 .

{
(x, y) ↦→ |𝑖 𝑗⟩

}
Ma

ZZ [x, y]
{
(x, y) ↦→ 0 0⊕a1 (x, y) ↦→ |𝑖 𝑗⟩

}
Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 6. Publication date: January 2026.

6:44 • Appendix Yusuke Matsushita, Kengo Hirata, Ryo Wakizaka, and Emanuele D’Osualdo

By linearity, we can assume that the initial state of x and z is some disentangled state. Here, we
take the initial state to be (x, z) ↦→ |𝑎⟩ (H |𝑏⟩) for 𝑎, 𝑏 ∈ {0, 1}. The qubit z is not in the classical
state |0⟩ or |1⟩, but we choose |+⟩ ≜ H |0⟩ and |−⟩ ≜ H |1⟩ for simplicity. Since ⟨|+⟩ , |−⟩⟩ spans
the whole 2-dimensional Hilbert space C2, this is enough to prove the correctness of the program.
The derivation is as follows:{

x ↦→ |𝑎⟩ ∗ y ↦→ |0⟩ ∗ z ↦→ H |𝑏⟩
}ι,κ,λ{

x ↦→ |𝑎⟩ ∗ 1√
2

∑︁
𝑐
y ↦→ H |𝑐⟩ ∗ z ↦→ H |𝑏⟩

}ι,κ,λ
MιXX [y, z]{
x ↦→ |𝑎⟩ ∗ 1√

2

⊕
ι
∑︁

𝑐
𝛿ι,𝑐⊻𝑏 · y ↦→ H |𝑐⟩ ∗ z ↦→ H |𝑏⟩

}κ,λ
{
x ↦→ |𝑎⟩ ∗ 1√

2

⊕
ι

y ↦→ H |𝑏 ⊻ ι⟩ ∗ z ↦→ H |𝑏⟩
}κ,λ (𝑐 ≔ 𝑏 ⊻ ι)

if ι then Z[x]{ 1√
2

⊕
ι

(−1)𝑎ι · x ↦→ |𝑎⟩ ∗ y ↦→ H |𝑏 ⊻ ι⟩ ∗ z ↦→ H |𝑏⟩
}κ,λ

{ 1
2

⊕
ι
∑︁

𝑑
(−1)𝑎ι+(𝑏⊻ι)𝑑 · (x, y) ↦→ |𝑎𝑑⟩ ∗ z ↦→ H |𝑏⟩

}κ,λ
MκZZ [x, y]{ 1

2

⊕
ι,κ∑︁

𝑑
𝛿κ,𝑎⊻𝑑 · (−1)𝑎ι+(𝑏⊻ι)𝑑 · (x, y) ↦→ |𝑎𝑑⟩ ∗ z ↦→ H |𝑏⟩

}λ
{ 1

2

⊕
ι,κ
(−1)𝑎ι+(𝑏⊻ι) (𝑎⊻κ) · (x, y) ↦→ |𝑎 (𝑎 ⊻ κ)⟩ ∗ z ↦→ H |𝑏⟩

}λ (𝑑 ≔ 𝑎 ⊻ κ)

if κ then X[z]{ 1
2

⊕
ι,κ
(−1)𝑎ι+(𝑏⊻ι) (𝑎⊻κ)+𝑏κ · (x, y) ↦→ |𝑎 (𝑎 ⊻ κ)⟩ ∗ z ↦→ H |𝑏⟩

}λ{ 1
2

⊕
ι,κ
(−1)𝑎𝑏+ικ · (x, y) ↦→ |𝑎 (𝑎 ⊻ κ)⟩ ∗ z ↦→ H |𝑏⟩

}λ
H[y]{ 1

2

⊕
ι,κ
(−1)𝑎𝑏+ικ · x ↦→ |𝑎⟩ ∗ y ↦→ H |𝑎 ⊻ κ⟩ ∗ z ↦→ H |𝑏⟩

}λ
MλZ [y]{ 1

2
√

2

⊕
ι,κ,λ
(−1)𝑎𝑏+ικ+(𝑎⊻κ)λ · (x, y) ↦→ |𝑎λ⟩ ∗ z ↦→ H |𝑏⟩

}
if λ then Z[x]{ 1

2
√

2

⊕
ι,κ,λ
(−1)𝑎𝑏+ικ+(𝑎⊻κ)λ+𝑎λ · (x, y) ↦→ |𝑎λ⟩ ∗ z ↦→ H |𝑏⟩

}
{ 1

2
√

2

⊕
ι,κ,λ
(−1)𝑎𝑏+ικ+κλ · (x, y) ↦→ |𝑎λ⟩ ∗ z ↦→ H |𝑏⟩

}
{
(−1)𝑎𝑏 1

2
√

2
· (x, z) ↦→ |𝑎⟩ ⊗ H |𝑏⟩ ∗

⊕
ι,κ,λ
(−1)ικ+κλ · y ↦→ |λ⟩

}
Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 6. Publication date: January 2026.

RapunSL: UntanglingQuantum Computing with Separation, Linear Combination and Mixing Appendix • 6:45{
(x, z) ↦→ CX (|𝑎⟩ ⊗ H |𝑏⟩) ∗ 1

2
√

2

⊕
ι,κ,λ
(−1)ικ+κλ · y ↦→ |λ⟩

}
.

Although the above proof is a bit long, each step is straightforward. Note that at the second last step,
we used the unframe rule bigbmix-unframe. This proves that the program behaves as the CNOT
gate for the initial state (x, z) ↦→ |𝑎⟩ ⊗ H |𝑏⟩. Finally, we can set 𝑃 ≜ 1

2
√

2

⊕
ι,κ,λ (−1)ικ+κλ · y ↦→

|λ⟩ (which satisfies frameable and prob 1) and conclude the proof with the following derivation,
generalizing the assertion to any initial state of x and z using hoare-sum and hoare-scale:

∀𝑎, 𝑠 .
{
(x, z) ↦→ |𝑎𝑠⟩ ∗ y ↦→ |0⟩

}ι,κ,λ
mCNOTι,κ,λ [x, y, z]

{
(x, z) ↦→ CX |𝑎𝑠⟩ ∗ 𝑃

}
∀𝑎, 𝑠 .

{
(x, z) ↦→ 𝛼𝑎,𝑠 |𝑎𝑠⟩ ∗ y ↦→ |0⟩

}ι,κ,λ
mCNOTι,κ,λ [x, y, z]

{
(x, z) ↦→ 𝛼𝑎,𝑠CX |𝑎𝑠⟩ ∗ 𝑃

} hoare-scale{
(x, z) ↦→ |𝜓 ⟩ ∗ y ↦→ |0⟩

}ι,κ,λ
mCNOTι,κ,λ [x, y, z]

{
(x, z) ↦→ CX |𝜓 ⟩ ∗ 𝑃

} hoare-sum

Here, 𝑎 and 𝑠 range over {0, 1} and {+,−}, respectively. This works because we can decompose
any vector |𝜓 ⟩ into ∑

𝑎,𝑠 𝛼𝑎,𝑠 |𝑎𝑠⟩ for some coefficients 𝛼𝑎,𝑠 ∈ C.

B.5 Error Correction: Bit-Flip Code
Here we give the details of § 5.4.
Fault-tolerant quantum computation aims to protect quantum information from errors by in-

troducing redundancy, and the error correction codes are a key component of this approach. For
example, instead of representing a qubit state |𝑖⟩ (for 𝑖 ∈ {0, 1}) using a single qubit, we can encode
it as |𝑖𝑖𝑖⟩ using three qubits. This duplication enables error detection and correction if one of the
qubits flips due to noise.

More generally, such redundancy means that an abstract single-qubit state—referred to as a logical
qubit—is encoded across multiple physical qubits. Such an encoding is called an error correction
code and allows the system to tolerate certain classes of errors without compromising the logical
information.

One of the simplest quantum error correction codes we consider in this section is the three-qubit
bit-flip code. It encodes a logical qubit 𝛼 |0⟩ + 𝛽 |1⟩ as 𝛼 |000⟩ + 𝛽 |111⟩, and protects against a single
bit-flip error, which is an error that flips the state of a qubit from |0⟩ to |1⟩ or vice versa. The error
correction procedure can be expressed as the circuit in Fig. 21. Formally, BitEC can be defined as
the following program:

BitECa,b [x, y, z] ≜ CX[y, x]; Ma
Z [x]; CX[y, x]; CX[z, y]; Mb

Z [y]; CX[z, y];
if a ∧ ¬b then X[x]; if a ∧ b then X[y]; if ¬a ∧ b then X[z] .

The first line applies the CNOT gates and measurements are error detection steps. During this
phase, we measure the effect of the errors, called the syndrome, by measuring the qubits y and
z. The second line applies corrective operations based on the measurement results to recover the
original logical qubit state. The correctness of this error-correction procedure can be specified as
the following assertion, which holds for any 𝑒1, 𝑒2, 𝑒3 ∈ {0, 1} satisfying 𝑒1 + 𝑒2 + 𝑒3 ≤ 1:

∀𝛼, 𝛽.
{
(x, y, z) ↦→ (X𝑒1X𝑒2X𝑒3) (𝛼 |000⟩ + 𝛽 |111⟩)

}a,b
BitECa,b [x, y, z]

{
(x, y, z) ↦→ (𝛼 |000⟩ + 𝛽 |111⟩) ∗ 𝑃 BitECa,b

𝑒1,𝑒2,𝑒3

}
.

Here, 𝑃 BitECa,b

𝑒1,𝑒2,𝑒3 is some SL assertion satisfying frameable and prob 1.
We can prove it by the following derivation for 𝑖 = 0, 1:{

x ↦→ |𝑖 ⊻ 𝑒1⟩ ∗ y ↦→ |𝑖 ⊻ 𝑒2⟩ ∗ z ↦→ |𝑖 ⊻ 𝑒3⟩
}a,b

CX[x, y]
{
x ↦→ |𝑖 ⊻ 𝑒1⟩ ∗ y ↦→ |𝑒1 ⊻ 𝑒2⟩ ∗ z ↦→ |𝑖 ⊻ 𝑒3⟩

}a,b
Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 6. Publication date: January 2026.

6:46 • Appendix Yusuke Matsushita, Kengo Hirata, Ryo Wakizaka, and Emanuele D’Osualdo

Ma
Z [y]

{⊕a
𝛿a,𝑒1⊻𝑒2 · x ↦→ |𝑖 ⊻ 𝑒1⟩ ∗ y ↦→ |𝑒1 ⊻ 𝑒2⟩ ∗ z ↦→ |𝑖 ⊻ 𝑒3⟩

}a,b
CX[x, y]

{⊕a
𝛿a,𝑒1⊻𝑒2 · x ↦→ |𝑖 ⊻ 𝑒1⟩ ∗ y ↦→ |𝑖 ⊻ 𝑒2⟩ ∗ z ↦→ |𝑖 ⊻ 𝑒3⟩

}a
CX[y, z]; Mb

Z [z]; CX[y, z]{⊕a,b
𝛿a,𝑒1⊻𝑒2𝛿b,𝑒2⊻𝑒3 · x ↦→ |𝑖 ⊻ 𝑒1⟩ ∗ y ↦→ |𝑖 ⊻ 𝑒2⟩ ∗ z ↦→ |𝑖 ⊻ 𝑒3⟩

}
if a ∧ ¬b then X[x]; if a ∧ b then X[y]; if ¬a ∧ b then X[z];{⊕a,b

𝛿a,𝑒1⊻𝑒2𝛿b,𝑒2⊻𝑒3 · x ↦→ |𝑖 ⊻ 𝑒1 ⊻ a ·¬b⟩ ∗ y ↦→ |𝑖 ⊻ 𝑒2 ⊻ ab⟩ ∗ z ↦→ |𝑖 ⊻ 𝑒3 ⊻ ¬a ·b⟩
}

{
𝑃 BitECa,b

𝑒1,𝑒2,𝑒3 ∗ x ↦→ |𝑖 ⊻ 𝑒1 ⊻ (𝑒1 ⊻ 𝑒2) (1 ⊻ 𝑒2 ⊻ 𝑒3)⟩ ∗ y ↦→ |𝑖 ⊻ 𝑒2 ⊻ (𝑒1 ⊻ 𝑒2) (𝑒2 ⊻ 𝑒3)⟩ ∗
z ↦→ |𝑖 ⊻ 𝑒3 ⊻ (1 ⊻ 𝑒1 ⊻ 𝑒2) (𝑒2 ⊻ 𝑒3)⟩

}
.

Here, we let 𝑃 BitECa,b

𝑒1,𝑒2,𝑒3 ≜
⊕a,b

𝛿a,𝑒1⊻𝑒2𝛿b,𝑒2⊻𝑒3 , which does not depend on 𝑖 . Thanks to 𝑒1+𝑒2+𝑒3 ≤ 1,
with an easy bit manipulation we can show the following (we use 𝑒2

𝑖 = 𝑒𝑖 and 𝑒𝑖𝑒 𝑗 = 0 under 𝑖 ≠ 𝑗):

𝑒1 ⊻ (𝑒1 ⊻ 𝑒2) (1 ⊻ 𝑒2 ⊻ 𝑒3) = 𝑒1 ⊻ 𝑒1 ⊻ 𝑒2 ⊻ 𝑒2 = 0
𝑒2 ⊻ (𝑒1 ⊻ 𝑒2) (𝑒2 ⊻ 𝑒3) = 𝑒2 ⊻ 𝑒2 = 0

𝑒3 ⊻ (1 ⊻ 𝑒1 ⊻ 𝑒2) (𝑒2 ⊻ 𝑒3) = 𝑒3 ⊻ 𝑒2 ⊻ 𝑒3 ⊻ 𝑒2 = 0.

Therefore, the postcondition can be simplified to 𝑃 BitECa,b

𝑒1,𝑒2,𝑒3 ∗ (x, y, z) ↦→ |𝑖𝑖𝑖⟩.
Finally, we can use hoare-sum and hoare-scale to generalize this proof to any initial state

𝛼 |000⟩ + 𝛽 |111⟩ (we here abbreviate BitECa,b [x, y, z] as BitEC and 𝑃 BitECa,b

𝑒1,𝑒2,𝑒3 as 𝑃 BitEC):

∀𝑖 ∈ {0, 1}.
{
(x, y, z) ↦→ (X𝑒1X𝑒2X𝑒3) |𝑖𝑖𝑖⟩

}a,b
BitEC

{
𝑃 BitEC ∗ (x, y, z) ↦→ |𝑖𝑖𝑖⟩

}{
(x, y, z) ↦→ (X𝑒1X𝑒2X𝑒3) (𝛼 |000⟩)

}a,b
BitEC

{
𝑃 BitEC ∗ (x, y, z) ↦→ 𝛼 |000⟩

}{
(x, y, z) ↦→ (X𝑒1X𝑒2X𝑒3) (𝛽 |111⟩)

}a,b
BitEC

{
𝑃 BitEC ∗ (x, y, z) ↦→ 𝛽 |111⟩

} hoare-scale

{
(x, y, z) ↦→ (X𝑒1X𝑒2X𝑒3) (𝛼 |000⟩ + 𝛽 |111⟩)

}a,b
BitEC

{
𝑃 BitEC ∗ (x, y, z) ↦→ 𝛼 |000⟩ + 𝛽 |111⟩

} hoare-sum

Our proof of the correctness of the bit-flip code has some similarities with verification of quantum
error correction codes using symbolic execution as in [Fang and Ying 2024], though our approach
is fundamentally different. Their approach uses density matrices and stabilizer codes, while our
approach uses vector spaces and separation logic.

There are other kinds of errors that can occur in quantum computation, such as phase-flip errors.
A phase-flip error negates the relative phase between |0⟩ and |1⟩, i.e., applies the Z gate, turning |1⟩
to − |1⟩ but |0⟩ to |0⟩. In other words, it transforms a qubit state |+⟩ to |−⟩ and vice versa. In order
to correct such phase-flip errors, we need a different error correction code. However, this can be
done easily by using the bit-flip code in a clever way. Since a bit-flip code encodes a logical qubit
|0⟩ as |000⟩ and |1⟩ as |111⟩ to protect against a bit-flip error, we can instead take three copies with
respect to the X basis ⟨|+⟩ , |−⟩⟩ rather than the Z basis ⟨|0⟩ , |1⟩⟩, i.e., encode a qubit |+⟩ as |+++⟩
and |−⟩ as |−−−⟩. As the Hadamard gate H transforms the X basis to the Z basis and vice versa,
we can derive the phase-flip code error correction procedure PhaseEC simply by putting H gates
before and after the phase-flip code error correction procedure BitEC.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 6. Publication date: January 2026.

RapunSL: UntanglingQuantum Computing with Separation, Linear Combination and Mixing Appendix • 6:47

The phase-flip code error correction procedure PhaseEC can be derived from BitEC as follows:

x if 𝑒1 then Z

PhaseECy if 𝑒2 then Z

z if 𝑒3 then Z

=

x if 𝑒1 then Z H

BitEC

H

y if 𝑒2 then Z H H

z if 𝑒3 then Z H H

Formally, PhaseEC is defined as the following program:

PhaseECa,b [x, y, z] ≜ H[x]; H[y]; H[z]; BitECa,b [x, y, z]; H[x]; H[y]; H[z] .

We can immediately derive the following specification of the procedure PhaseEC from the specifi-
cation of BitEC, for any 𝑒1, 𝑒2, 𝑒3 ∈ {0, 1} such that 𝑒1 + 𝑒2 + 𝑒3 ≤ 1:

∀𝛼, 𝛽.
{
(x, y, z) ↦→ Z𝑒1Z𝑒2Z𝑒3 (𝛼 |+++⟩ + 𝛽 |−−−⟩)

}a,b
PhaseECa,b [x, y, z]

{
(x, y, z) ↦→ (𝛼 |+++⟩ + 𝛽 |−−−⟩) ∗ 𝑃 BitECa,b

𝑒1,𝑒2,𝑒3

}
.

B.6 Error Correction: Shor Code
Here we give the details of § 5.5.

Now, we can combine the bit-flip code and the phase-flip code to construct a universal quantum
error correction code capable of correcting any single-qubit error. This construction is known as
the Shor code, which encodes a single logical qubit into 9 physical qubits. The Shor code achieves
this by nesting two types of codes: we first apply a phase-flip code to the logical qubit, and then
apply a bit-flip code to each of the resulting qubits. Concretely, the Shor code encodes the logical
qubit state 𝛼 |0⟩ + 𝛽 |1⟩ into

𝛼 |0L0L0L⟩ + 𝛽 |1L1L1L⟩ ,
where |0L⟩ and |1L⟩ are phase-flip-encoded states. In this way, the Shor code uses a bit-flip code
over logical qubits that have already been protected against phase-flip errors, ensuring robustness
against both bit-flip and phase-flip errors.
Such codes that can correct both bit-flip and phase-flip errors are universal in the sense that

they can correct any single-qubit unitary error. The sketch of the intuitive proof of this is as
follows. Because the Pauli gates id, X, Z and Y = −

√
−1ZX form an orthogonal basis for the whole

linear space of complex 2 × 2 matrices, any single-qubit unitary error𝑈 can be decomposed into
a linear combination of id, X, Z and ZX, with a coefficient vector of norm 1. So we can write
𝑈 = 𝜆0id + 𝜆1X + 𝜆2Z + 𝜆3ZX for some (𝜆𝑖)3𝑖=0 such that

∑3
𝑖=0 |𝜆𝑖 |2 = 1. Note that a state |𝜓 ⟩ with

the error𝑈 applied,𝑈 |𝜓 ⟩, can be expressed as

𝜆0 |𝜓 ⟩ + 𝜆1X |𝜓 ⟩ + 𝜆2Z |𝜓 ⟩ + 𝜆3ZX |𝜓 ⟩ .

By linearity of quantum computation, it suffices to show that the matrices X, Z and ZX, can be
corrected by the Shor code. Perhaps surprisingly, this is immediate, because PhaseEC and BitECL
are designed to correct X and Z errors, respectively.
The Shor code is a perfect example to demonstrate the power of our separation logic. The

error correction circuit ShorEC for the Shor code is given in Fig. 22 and the formal definition
has been given in § 5.5. As we can see, the whole circuit has 9 qubits, meaning the dimension of
the Hilbert space is 29 = 512. However, it can be decomposed into smaller modules, which can
be verified independently using separation logic. This not only makes the verification process
more manageable, it also lets us use our linear-combination rule to simplify the proof, since the
universality of the Shor code is based on the linearity of quantum computation as sketched above.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 6. Publication date: January 2026.

6:48 • Appendix Yusuke Matsushita, Kengo Hirata, Ryo Wakizaka, and Emanuele D’Osualdo

if 𝑒1 then 𝑈

PhaseEC

BitECL

if 𝑒2 then 𝑈

if 𝑒3 then 𝑈

if 𝑒4 then 𝑈

PhaseECif 𝑒5 then 𝑈

if 𝑒6 then 𝑈

if 𝑒7 then 𝑈

PhaseECif 𝑒8 then 𝑈

if 𝑒9 then 𝑈

Fig. 22. Error correction circuit for the Shor code.

Let us first explain how the last component BitECL is constructed. This program is essentially
the same as the 3-qubit bit-flip code BitEC we have already verified, but with each physical qubit
replaced by a logical qubit encoded by the phase-flip code. Since we used X and CNOT gates and a
measurement to implement the bit-flip code, we first implement these gates for the phase-flip code.
That is, we verify the following assertions for programs XL, CXL andML

Z to use them as building
blocks for the error correction of the bit-flip code.

∃𝑄 : frameable, prob 1. ∀𝑖 ∈ {0, 1}.
{
x̄ ↦→ |𝑖L⟩

}
XL [x̄]

{
x̄ ↦→ |¬𝑖L⟩ ∗𝑄

}
∃𝑄 : frameable, prob 1. ∀𝑖, 𝑗 ∈ {0, 1}.

{
(x̄, ȳ) ↦→ |𝑖L 𝑗L⟩

}
CXL [x̄, ȳ]

{
(x̄, ȳ) ↦→ |𝑖L (𝑖 ⊻ 𝑗)L⟩ ∗ 𝑄

}
∃𝑄 : frameable, prob 1.

{
x̄ ↦→ |0L⟩

}a
MLa

Z [x̄]
{ (

x̄ ↦→ |0L⟩ 0⊕a1 x̄ ↦→ 0
)
∗ 𝑄

}
∃𝑄 : frameable, prob 1.

{
x̄ ↦→ |1L⟩

}a
MLa

Z [x̄]
{ (

x̄ ↦→ 0 0⊕a1 x̄ ↦→ |0L⟩
)
∗ 𝑄

}
Notably, we can abstract the factor 𝑄 by the condition 𝑄 : frameable, prob 1. Then, we can replace
the basic gates X, CX and MZ in BitEC with the above programs to implement BitECL. More
concretely, BitECL is defined as follows:

BitECa,b
L [x̄, ȳ, z̄] ≜ CXL [ȳ, x̄]; MLa

Z [x̄]; CXL [ȳ, x̄]; CXL [z̄, ȳ]; MLb
Z [ȳ]; CXL [z̄, ȳ];

if a ∧ ¬b then XL [x̄]; if a ∧ b then XL [ȳ]; if ¬a ∧ b then XL [z̄] .

We can also verify the correctness of BitECL exactly as we have done for the normal bit-flip code:

∃𝑄 : frameable, prob 1. ∀𝑒1, 𝑒2, 𝑒3 s.t. 𝑒1 + 𝑒2 + 𝑒3 ≤ 1. ∀𝛼, 𝛽.{
(x̄, ȳ, z̄) ↦→ (X𝑒1

L X
𝑒2
L X

𝑒3
L) (𝛼 |0L0L0L⟩ + 𝛽 |1L1L1L⟩)

}a,b
BitECa,b

L [x̄, ȳ, z̄]
{
(x̄, ȳ, z̄) ↦→ (𝛼 |0L0L0L⟩ + 𝛽 |1L1L1L⟩) ∗ 𝑃 BitECa,b

𝑒1,𝑒2,𝑒3 ∗ 𝑄
}
.

This procedure of lifting the proof of correctness of the 3-qubit bit-flip code to the 9-qubit version
BitECL is not completely automatic. However, we can easily redo the proof of correctness of a
generalized bit-flip code implemented on top of any logical qubit encoded by an arbitrary code.
This allows us to reuse the specification of the bit-flip code as a building block in the verification of
any program that uses it. In this way, we can still avoid verifying the correctness of the bit-flip
code every time we use it.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 6. Publication date: January 2026.

RapunSL: UntanglingQuantum Computing with Separation, Linear Combination and Mixing Appendix • 6:49

Finally, we verify the correctness of the Shor code. The specification of the correctness is similar
to the ones we have seen (we omit classical variables for simplicity):

∃ 𝑃 : frameable, prob 1. ∀𝛼, 𝛽.
{
(x̄, ȳ, z̄) ↦→ (𝑈 𝑒1 ⊗ · · · ⊗ 𝑈 𝑒9) (𝛼 |0L0L0L⟩ + 𝛽 |1L1L1L⟩)

}
ShorEC[x̄, ȳ, z̄]

{
(x̄, ȳ, z̄) ↦→ (𝛼 |0L0L0L⟩ + 𝛽 |1L1L1L⟩) ∗ 𝑃

}
.

This holds for any single-qubit unitary error𝑈 and any 𝑒1, . . . , 𝑒9 ∈ {0, 1} under
∑9

𝑖=1 𝑒𝑖 = 1.20
To simplify the proof, we first assume the case where𝑈 = Z𝑎X𝑏 for 𝑎, 𝑏 ∈ {0, 1}. We can derive

the following on PhaseEC[x̄].

∀𝑐 ∈ {0, 1}.
{
x̄ ↦→ (

⊗3
𝑖=1 Z

𝑎𝑒𝑖X𝑏𝑒𝑖) |𝑐L𝑐L𝑐L⟩
}

PhaseEC[x̄]{
x̄ ↦→ (

⊗3
𝑖=1 X

𝑏𝑒𝑖) |𝑐L𝑐L𝑐L⟩ ∗ 𝑃 BitEC
𝑎𝑒1,𝑎𝑒2,𝑎𝑒3

}
∀𝑐 ∈ {0, 1}.

{
(x̄, ȳ, z̄) ↦→ (

⊗9
𝑖=1 Z

𝑎𝑒𝑖X𝑏𝑒𝑖) |𝑐L𝑐L𝑐L⟩
}

PhaseEC[x̄]{
(x̄, ȳ, z̄) ↦→ (

⊗3
𝑖=1 X

𝑏𝑒𝑖 ⊗
⊗9

𝑖=4 Z
𝑎𝑒𝑖X𝑏𝑒𝑖) |𝑐L𝑐L𝑐L⟩ ∗ 𝑃 BitEC

𝑎𝑒1,𝑎𝑒2,𝑎𝑒3

} hoare-frame

{
(x̄, ȳ, z̄) ↦→ (

⊗9
𝑖=1 Z

𝑎𝑒𝑖X𝑏𝑒𝑖) (𝛼 |0L0L0L⟩ + 𝛽 |1L1L1L⟩)
}

PhaseEC[x̄]{
(x̄, ȳ, z̄) ↦→ (

⊗3
𝑖=1 X

𝑏𝑒𝑖 ⊗
⊗9

𝑖=4 Z
𝑎𝑒𝑖X𝑏𝑒𝑖) (𝛼 |0L0L0L⟩ + 𝛽 |1L1L1L⟩) ∗ 𝑃 BitEC

𝑎𝑒1,𝑎𝑒2,𝑎𝑒3

} hoare-sum

Here, we used 𝑎𝑒1 + 𝑎𝑒2 + 𝑎𝑒3 ≤ 1. Using this kind of derivation for PhaseEC three times and the
specification of the enriched bit-flip code BitEC, we can derive the following for any 𝛼, 𝛽 ∈ C,
letting |𝜓L⟩ ≜ 𝛼 |0L0L0L⟩ + 𝛽 |1L1L1L⟩:{

(x̄, ȳ, z̄) ↦→ (
⊗9

𝑖=1 Z
𝑎𝑒𝑖X𝑏𝑒𝑖) |𝜓L⟩

}
PhaseEC[x̄]{
(x̄, ȳ, z̄) ↦→ (

⊗3
𝑖=1 X

𝑏𝑒𝑖 ⊗
⊗9

𝑖=4 Z
𝑎𝑒𝑖X𝑏𝑒𝑖) |𝜓L⟩ ∗ 𝑃 (1)𝑎

}
PhaseEC[ȳ]{
(x̄, ȳ, z̄) ↦→ (

⊗6
𝑖=1 X

𝑏𝑒𝑖 ⊗
⊗9

𝑖=7 Z
𝑎𝑒𝑖X𝑏𝑒𝑖) |𝜓L⟩ ∗ 𝑃 (2)𝑎

}
PhaseEC[z̄]{
(x̄, ȳ, z̄) ↦→ (

⊗9
𝑖=1 X

𝑏𝑒𝑖) |𝜓L⟩ ∗ 𝑃 (3)𝑎

}{
(x̄, ȳ, z̄) ↦→ (X𝑏 (𝑒1∨𝑒2∨𝑒3)

L ⊗ X𝑏 (𝑒4∨𝑒5∨𝑒6)
L ⊗ X𝑏 (𝑒7∨𝑒8∨𝑒9)

L) |𝜓L⟩ ∗ 𝑃 (3)𝑎

}
BitECL [x̄, ȳ, z̄]{
(x̄, ȳ, z̄) ↦→ |𝜓L⟩ ∗ 𝑃 (4)𝑎,𝑏

}
Note that every 𝑃 (𝑘) is a global phase guard that satisfies 𝑃 (𝑘) : frameable, thanks to the fact that
the separating conjunction of frameable assertions is frameable (Fig. 18). Importantly, each 𝑃 (𝑘)

depends on the error parameters 𝑎, 𝑏 (and each 𝑒𝑖), but it does not depend on the initial state |𝜓L⟩.
Finally, we can use the linear combination rule to derive the final specification of the Shor code. Let
a single-qubit error𝑈 be written as

∑
𝑎,𝑏∈{0,1} 𝜆𝑎,𝑏Z

𝑎X𝑏 for (𝜆𝑎,𝑏)𝑎,𝑏 such that
∑

𝑎,𝑏∈{0,1} |𝜆𝑎,𝑏 |2 = 1.
Then we have the following derivation (we here abbreviate ShorEC[x̄, ȳ, z̄] as ShorEC):

∀𝑎,𝑏.
{
(x̄, ȳ, z̄) ↦→ (

⊗9
𝑖=1 Z

𝑎𝑒𝑖X𝑏𝑒𝑖) |𝜓L⟩
}
ShorEC

{
(x̄, ȳ, z̄) ↦→ |𝜓L⟩ ∗ 𝑃 (4)𝑎,𝑏

}
∀𝑎,𝑏.

{
(x̄, ȳ, z̄) ↦→ (

⊗9
𝑖=1 Z

𝑎𝑒𝑖X𝑏𝑒𝑖)𝜆𝑎,𝑏 |𝜓L⟩
}
ShorEC

{
(x̄, ȳ, z̄) ↦→ |𝜓L⟩ ∗ 𝜆𝑎,𝑏𝑃 (4)𝑎,𝑏

} hoare-scale{
(x̄, ȳ, z̄) ↦→ ∑

𝑎,𝑏 (
⊗9

𝑖=1 Z
𝑎𝑒𝑖X𝑏𝑒𝑖)𝜆𝑎,𝑏 |𝜓L⟩

}
ShorEC

{
(x̄, ȳ, z̄) ↦→ |𝜓L⟩ ∗

∑
𝑎,𝑏 𝜆𝑎,𝑏𝑃

(4)
𝑎,𝑏

} hoare-sum

20 We can safely exclude the case where 𝑒1 = · · · = 𝑒9 = 0, because we can set𝑈 = id to model the error-free situation.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 6. Publication date: January 2026.

6:50 • Appendix Yusuke Matsushita, Kengo Hirata, Ryo Wakizaka, and Emanuele D’Osualdo

The precondition can be rewritten as
∑

𝑎,𝑏 (
⊗9

𝑖=1 Z
𝑎𝑒𝑖X𝑏𝑒𝑖)𝜆𝑎,𝑏 |𝜓L⟩ = (

⊗9
𝑖=1𝑈

𝑒𝑖) |𝜓L⟩. The frame-
ability of 𝑃 ≜

∑
𝑎,𝑏 𝜆𝑎,𝑏𝑃

(4)
𝑎,𝑏

follows from the construction.
Finally, we prove 𝑃 : prob 1.21 Since the coefficients 𝜆𝑎,𝑏 satisfy

∑
𝑎,𝑏∈{0,1} |𝜆𝑎,𝑏 |2 = 1, it suffices to

prove 𝑃 (4)
𝑎,𝑏

: prob 1 and that the assertions (𝑃 (4)
𝑎,𝑏
)𝑎,𝑏∈{0,1} are orthogonal. To begin with, 𝑃 (4)

𝑎,𝑏
has

the following form:

𝑃 BitECκ,λ
𝑒,𝑒′,𝑒′′ ≜

⊕
κ,λ

𝛿κ,𝑒⊻𝑒′𝛿λ,𝑒′⊻𝑒′′

𝑃
(4)
𝑎,𝑏

≜ 𝑃 BitECκ1,λ1
𝑎𝑒1,𝑎𝑒2,𝑎𝑒3 ∗ 𝑃

BitECκ2,λ2
𝑎𝑒4,𝑎𝑒5,𝑎𝑒6 ∗ 𝑃

BitECκ3,λ3
𝑎𝑒7,𝑎𝑒8,𝑎𝑒9 ∗ 𝑃

BitECκ4,λ4
𝑏 (𝑒1∨𝑒2∨𝑒3),𝑏 (𝑒4∨𝑒5∨𝑒6),𝑏 (𝑒7∨𝑒8∨𝑒9) ∗ 𝑄.

Here,𝑄 is some proposition satisfying frameable and prob 1. We can easily prove 𝑃 (4)
𝑎,𝑏

: prob 1. Now
we prove the orthogonality of (𝑃 (4)

𝑎,𝑏
)𝑎,𝑏∈{0,1} . We can easily prove the orthogonality 𝑃 BitECκ,λ

𝑒 ⊥
𝑃 BitECκ,λ
𝑒′ for distinct (𝑒), (𝑒′) ∈ {0, 1}3. So, for any two distinct parameters (𝑎, 𝑏), (𝑎′, 𝑏′) ∈ {0, 1}2,
at least one of the first four conjuncts in 𝑃 (4) is orthogonal.22 Therefore, by the rule orth-frame
in §A.7, the set {𝑃 (4)

𝑎,𝑏
}𝑎,𝑏∈{0,1} is proved orthogonal.

B.7 Probabilistic Choice and Almost Sure Termination
Here we give the details of § 5.6.

Recall the repeat-until-success program we considered:
cointoss′𝑝 ≜ while a do

(
coina𝑝 ; c←c + 1

)
cointoss𝑝 ≜ coina𝑝 ; cointoss′𝑝 .

We can prove the following specification for any probability 𝑝 ∈ (0, 1], guaranteeing almost sure
termination:

∃ 𝑃 : frameable, prob 1.
{
c ↦→ 0

}a
cointoss𝑝

{
a ↦→ 0 ∗ 𝑃

}
.

Let 𝑃𝑛 ≜
√︁
(1 − 𝑝)𝑛 · (a ↦→ 0 ⊕𝑝 a ↦→ 1) ∗ c ↦→ 𝑛, 𝑄𝑛 ≜

√︁
(1 − 𝑝)𝑛𝑝 · a ↦→ 0 ∗ c ↦→ 𝑛, and

𝑅𝑛 ≜
√︁
(1 − 𝑝)𝑛+1 · a ↦→ 1 ∗ c ↦→ 𝑛 for 𝑛 ∈ N. Also, we set 𝑃 ≜

⊕c
𝑛∈N

√︁
(1 − 𝑝)𝑛𝑝 . Then we can

conclude the proof by the following derivation:

{
c ↦→ 0

}a
coina𝑝

{
𝑃0

}
∀𝑛.

{
𝑃𝑛

}
a
{
↑0 ∗𝑄𝑛 ⊕ ↑1 ∗ 𝑅𝑛

}
∀𝑛.

{
𝑅𝑛

}
coina𝑝 ; c←c + 1

{
𝑃𝑛+1

}{
𝑃0

}
𝑃0

{⊕c

𝑛∈N

√︁
(1 − 𝑝)𝑛𝑝 ∗ a ↦→ 0

} hoare-while{
𝑃0

}
cointoss′𝑝

{
a ↦→ 0 ∗ 𝑃

} bigbmix-unframe{
c ↦→ 0

}a
cointoss𝑝

{
a ↦→ 0 ∗ 𝑃

}
Notably, 𝑃 : frameable, prob 1 holds. The counter c is crucial for the unambiguity 𝑃 : unambig. The
probability judgment 𝑃 : prob 1 holds because

∑
𝑛∈N (1 − 𝑝)𝑛𝑝 = 1.

Received 2025-07-10; accepted 2025-11-06

21 This is quite trivial if we know that ShorEC is loop-free, because its termination probability is clearly 1. However, here
we prove 𝑃 : prob 1 even without depending on that knowledge, leveraging orthogonality.

22 Recall that we assume 𝑒1+ · · · +𝑒9 = 1. So exactly one of 𝑒1, . . . , 𝑒9 is non-zero. Also, exactly one of 𝑒1∨𝑒2∨𝑒3, 𝑒4∨𝑒5∨𝑒6
and 𝑒7 ∨ 𝑒8 ∨ 𝑒9 is non-zero.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 6. Publication date: January 2026.

	Abstract
	1 Introduction
	2 Overview of RapunSL
	2.1 Handling Superposition, Compositionally
	2.2 The Main Challenge: Handling Measurements Soundly
	2.3 The Three Layers of Locality
	2.4 Abstraction
	2.5 Summary

	3 Preliminaries and Program Language
	3.1 A Primer on Quantum Computing
	3.2 Program Language

	4 The RapunSL Logic
	4.1 Resources, Propositions and Entailment
	4.2 Bare Mixing
	4.3 Separating Conjunction
	4.4 Reasoning about Quantum Programs
	4.5 The Sum, the Heart of RapunSL
	4.6 Tagged Mixing
	4.7 Handling Complexity

	5 Case Studies
	5.1 Dirty Qubit: Implementation of CCCX by Toffoli Gates
	5.2 Quantum Teleportation
	5.3 Lattice Surgery: Implementation of CNOT with Measurements
	5.4 Error Correction: Bit-Flip Code
	5.5 Error Correction: Shor's Code
	5.6 Probabilistic Choice and Almost Sure Termination

	6 Discussion
	7 Related Work
	8 Conclusion and Future Work
	Acknowledgments
	References
	Appendix
	A More on the Logic
	A.1 Standard Connectives
	A.2 Right Adjoint of SL Connectives
	A.3 Additional Proof Rules
	A.4 More on Tagged Mixing
	A.5 More on Incompatibility Relation
	A.6 Soundness Proof
	A.7 Inner Product and Orthogonality

	B More on Case Studies
	B.1 Dirty Qubit: Implementation of CCCX by Toffoli Gates
	B.2 Program with Measurements: EPR Paradox
	B.3 Quantum Teleportation
	B.4 Lattice Surgery: Implementation of CNOT with Measurements
	B.5 Error Correction: Bit-Flip Code
	B.6 Error Correction: Shor Code
	B.7 Probabilistic Choice and Almost Sure Termination

