
CHC-based Program Verification Exploiting Ownership

Types

所有権型を利用した CHCベースのプログラム検証

by

Yusuke Matsushita

松下祐介

A Senior Thesis

卒業論文

Submitted to

the Department of Information Science

the Faculty of Science, the University of Tokyo

on February 28, 2019

in Partial Fulfillment of the Requirements

for the Degree of Bachelor of Science

Thesis Supervisor: Naoki Kobayashi 小林直樹
Professor of Information Science



ABSTRACT

Reduction to constrained Horn clauses (CHCs) is a recently popular approach to
automated program verification. One of the main challenges in this context is how to
treat pointers and destructive updates. A conventional method used pointer analysis
and array theory to address this issue; since resulting CHCs are rather complex, however,
it suffered from a scalability problem. This thesis shows how to exploit ownership types,
as provided in the Rust programming language, to improve the reduction of program
verification problems to sets of CHCs. Our new translation does not call for pointer
analysis or array theory in dealing with pointers controlled by ownership. Moreover, it
outputs simpler CHCs than the conventional method does, and generally shows better
verification performance when combined with an existing CHC solver. This study also
formalizes the translation and describes a conjecture on the correctness.

論文要旨

制約付きホーン節 (CHC)への帰着は自動プログラム検証で近年人気のある手法である。
これにおける主な困難の一つは、ポインタおよび破壊的更新の扱いである。従来手法はポ
インタ解析や配列理論を利用してこの問題に取り組んだが、出力される CHCが比較的複
雑であるため、規模を大きくしにくい問題があった。この論文では、Rustプログラミング
言語で提供されるような所有権型を利用することでプログラム検証問題の CHC集合への
帰着を改善する方法を示す。この新しい翻訳法は所有権で制御されたポインタを扱う上で
はポインタ解析や配列理論を要さない。さらに、得られる CHCは従来手法よりも単純で
あり、既存の CHCソルバとの組み合わせで概してより良い検証性能を示す。また、この
研究では変換を形式化し、その正しさについての予想を記述する。



Acknowledgments

I would like to express my deep gratitude to my supervisor Professor Naoki
Kobayashi and co-supervisor Associate Professor Takeshi Tsukada for patient
guidance and encouragement during this research. I would also like to thank
Mr. Masaki Hara, an enthusiastic contributor to the Rust community, for his
great advice, especially in the early stages of the research.



Contents

1 Introduction 1
1.1 Program Verification . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 CHC-based Program Verification . . . . . . . . . . . . . . . 2
1.1.2 Pointer Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.3 Array Theory . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.4 Program Verification Tools . . . . . . . . . . . . . . . . . . 4

1.2 Ownership Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.1 Introduction to Rust-style Ownership Types . . . . . . . . 6

1.3 This Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Overview of the Translation 8
2.1 Basic Ideas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 Operations on Mutable References Expressed in CHCs . . 10
2.1.2 Extensions of the Translation . . . . . . . . . . . . . . . . . 10

2.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Formalization of the Translation 20
3.1 Calculus of Ownership and Reference . . . . . . . . . . . . . . . . 20

3.1.1 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.1.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.1.3 Type Checking . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.1.4 Operational Semantics . . . . . . . . . . . . . . . . . . . . . 28

3.2 Translation of COR Programs into Sets of CHCs . . . . . . . . . . 31
3.2.1 Multi-sorted First-order Predicate Logic . . . . . . . . . . . 31
3.2.2 Translation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3 Conjecture on the Correctness of the Translation . . . . . . . . . . 35
3.3.1 Safety Invariant and the Preservation Lemma . . . . . . . . 35
3.3.2 Natural Model Built on Operational Semantics . . . . . . . 37
3.3.3 Conjecture on the Correctness . . . . . . . . . . . . . . . . 39

4 Experiment and Discussion 40
4.1 Experiment on the Verification Performances . . . . . . . . . . . . 40
4.2 Useful Invariants under CHCs Obtained by the Translation . . . . 41

5 Related Work 44

6 Conclusion 46

Bibliography 47

iv



Chapter 1

Introduction

1.1 Program Verification

Program verification is the act of proving/disproving that target programs
satisfy particular requirements. In this paper, the term verification refers to
creation of strict, formal guarantees. Methods like unit testing basically do not give
rigid guarantees on the correctness, and thus are outside the scope. As illustrated
below, a variety of (formal) program verification methods are conceived.

There exist many automated methods for program verification. This paper
mainly focuses on automated verification using constrained Horn clauses (CHCs).
It embeds programs into a particular form of formulae in predicate logic; CHC-
based verification is later explained in detail. Verification using model checking
on higher-order modal fixed-point logic (HFL) [67, 32] shares the same spirit with
CHC-based verification in that programs are translated into tractable logical en-
tities. In addition, verification using model checking on higher-order recursion
schemes (HORSs) [30, 38] is strongly related to verification using HFL [31]. Al-
though such translation of programs into amenable entities gives clear insights
and good heuristics, studies on these kinds of automated verification methods,
especially for programs on infinite-state systems, are just in progress.1 Let us
see a few other automated methods for program verification. Type checking pro-
vides lightweight verification on programs, but the verification power is often
quite limited. Some approaches, such as Checker Framework [46], extend the
type system of existing mainstream languages. Bounded model checking searches
some finite, bounded scope of inputs for bugs and errors; it is easy to use and
gives a firm guarantee of the correctness for the bounded scope, but it usually re-
quires a lot of computational resources and still does not give a general, complete
guarantee.

Semi-automated methods for verification are also eagerly studied; such meth-
ods allow great flexibility at the cost of human involvement. Some approaches,
such as ESC/Java2 [29], Why3 [61] and Spec# [59], make use of manual anno-
tations on properties like preconditions and postconditions, and automatically
check the correctness. Verification using proof assistants, such as Agda [44], Coq
[47], Isabelle [48] and Lean [49], involves both machine calculation (for proof
checking, proof search, etc.) and manual description of proof tactics; proof assis-
tants are usually designed for general mathematical proofs, but they can easily
be applied for program verification.

1Thinking of the famous Collatz conjecture, halting problems of some apparently simple pro-
grams turn out to be tremendously difficult.

1



1.1.1 CHC-based Program Verification

Reduction to constrained Horn clauses (CHCs), formulae of a particular form in
predicate logic, is a recently popular approach to automated program verification.
[4] is one of the earliest proposals to use CHCs as a universal intermediate
format for representing verification conditions; this design strategy is adopted
by modern verification frameworks such as JayHorn [27, 28] and SeaHorn [54,
14], which are introduced later. As mentioned in [5], the connection between
program logics and constrained Horn clauses in CHC-based verification can
be seen as a descendant of Floyd-Hoare logic [11, 19]. This subsection gives a
brief summary of CHC-based program verification. For more information, [5]
discusses useful properties and techniques on CHC-based program verification.

Constrained Horn Clauses

A constrained Horn clause (CHC) is defined as follows. Into an ordinary
first-order predicate logic, we newly introduce uninterpreted (atomic) predicates;
let R represent an uninterpreted predicate. An extended formula φ̂ is either
a formula (without uninterpreted predicates) φ or an uninterpreted predicate
applied to terms R(t1 , . . . , tn). A constrained Horn clause has form φ̂0 ⇐�

φ̂1 ∧ · · · ∧ φ̂n ; free variables in a CHC are treated as universally quantified
under appropriate scopes (e.g. within the set of natural numbers), which are not
explicitly given in principle throughout the paper.

CHCs can be regularized into either of the following forms, where metavari-
ables of form x i

j stand for mutually distinct variables.

R0(x0
1 , . . . , x

0
m0) ⇐� R1(x1

1 , . . . , x
1
m1) ∧ · · · ∧ Rn(xn

1 , . . . , x
n
mn

) ∧ φ

⊥ ⇐� R1(x1
1 , . . . , x

1
m1) ∧ · · · ∧ Rn(xn

1 , . . . , x
n
mn

) ∧ φ

Translating Programs to Sets of CHCs

In CHC-based verification, functions are represented as uninterpreted predicates
describing relationship between inputs and outputs. function definitions (possibly
recursive) are described as sets of CHCs.

Consider as an example the following recursively defined (total) function on
natural numbers.

fact(n) �
{

1 n � 0
n · fact(n − 1) n > 0

It is the well-known factorial function; in other words, fact(n) � n! holds. This
function is translated into the following set of CHCs.

fact(n , r) ⇐� n � 0 ∧ r � 1
fact(n , r) ⇐� n > 0 ∧ fact(n − 1, r′) ∧ r � n · r′

Some predicates, such as fact(n) � r (i.e. n! � r), ⊤, r > 0 and r > 0 ∧ r ≥ n
(where n and r are passed as arguments), satisfy these CHCs as fact(n , r); we call
such predicates fixed points or invariants. In fact, fact(n) � r is the least of such
predicates (under the pointwise preorder, with ⊥ smaller than ⊤); thus we call it
the least fixed point. In general, the least fixed point corresponds to the semantics
of the function; this is the central principle in CHC-based program verification.

Infinite loops can also be tackled by this framework. Consider as another
example the following partial function id-or-loop(n) on natural numbers which

2



is recursively defined.

id-or-loop(n) �
{

n n < 7
id-or-loop(n + 1) n ≥ 7

This returns n for an input less than seven, and falls into an infinite loop for an
input that is seven or more. The (partial) function is translated into the following
set of CHCs.

id-or-loop(n , r) ⇐� n < 7 ∧ r � n
id-or-loop(n , r) ⇐� n ≥ 7 ∧ id-or-loop(n + 1, r)

Predicate n < 7 ∧ r � n is the least fixed point, and is equivalent to condition
“id-or-loop(n) (terminates and) returns r”.

Verification of properties of form “φ(x1 , . . . , xn , r) holds for any x1 , . . . , xn , r
such that f(x1 , . . . , xn) returns r” can be reduced to satisfiability problems on
CHCs, by translating the function definition of f(x1 , . . . , xn) into CHCs for
an uninterpreted predicate f(x1 , . . . , xn) and adding CHCs of form φ ⇐�

f(x1 , . . . , xn , r).
If we want to prove fact(n) � r ∧ n > 2 �⇒ n < r (∀n , r ∈ N), for example,

it suffices to show that the following set of CHCs is satisfiable.

fact(n , r) ⇐� n � 0 ∧ r � 1
fact(n , r) ⇐� n > 0 ∧ fact(n − 1, r′) ∧ r � n · r′

n < r ⇐� fact(n , r) ∧ n > 2

Satisfiability can be proved by finding a fixed point that is a sufficient condition of
the property φ in question. In this example, every CHC will be true by setting
fact(n , r) to n ≤ r ∧ (n > 2 �⇒ n < r).

If we want to disprove fact(n) � 1 (∀n ∈ N), for another example, it suffices
to show that the following set of CHCs is unsatisfiable.

fact(n , r) ⇐� n � 0 ∧ r � 1
fact(n , r) ⇐� n > 0 ∧ fact(n − 1, r′) ∧ r � n · r′

r � 1 ⇐� fact(n , r)
We can show unsatisfiability of a set of CHCs by deriving contradiction from the
CHCs, which basically corresponds to finding a counterexample. In the example,
we can derive fact(0, 1) from the first CHC, fact(1, 1) from the second CHC and
fact(0, 1), fact(2, 2) from the second CHC and fact(1, 1), and finally ⊥ (contradic-
tion) from the third CHC and fact(2, 2); by this derivation unsatisfiability of the
set of CHCs is proved. It amounts to finding a counterexample fact(2) , 1.

Solving CHCs

There exist a number of techniques for solving satisfiability problems on
CHCs, which are well discussed in [5].

The fundamental technique is resolution. It generates a new CHC from two
CHCs sharing an uninterpreted predicate on the positive side and the negative side (i.e.
on the left-hand side and the right-hand side of ⇐� ), respectively. Through
resolution, the set of CHCs can be safely expanded. For example, resolution

from
R0(x) ⇐� R∗(x) ∧ φ2

R∗(x) ⇐� R1(x) ∧ φ1
yields R0(x) ⇐� R1(x) ∧ φ1 ∧ φ2.

3



This is a crucial technique, since every correct variable-free formula of form R(t1 , . . . ,
tn) (an uninterpreted predicate applied to variable-free terms t1 , . . . , tn) can be
obtained by resolution (with some minor adjustment).

The unfold transformation is a notable application of resolution. The trans-
formation erases a particular uninterpreted predicate R∗ from a set of CHCs, by
replacing its negative appearance with its original preconditions (i.e. every neg-
ative appearance of R∗(x1 , . . . , xn) is replaced with each B of the CHCs of form
R∗(x1 , . . . , xn) ⇐� B, under regularization) and then removing the CHCs in
which R∗ appears positively; there is the limitation that the preconditions of R∗
should not have R∗. For example, unfolding on R∗ transforms

R∗(x) ⇐� R1(x) ∧ φ1

R∗(x) ⇐� R2(x) ∧ φ2

R0(x) ⇐� R∗(x) ∧ φ0

into
R0(x) ⇐� R1(x) ∧ φ1 ∧ φ0

R0(x) ⇐� R2(x) ∧ φ2 ∧ φ0
.

A precise definition of the unfold transformation is given in [5]; several properties
of the transformation are also discussed in the paper.

The cutting-edge multi-purpose theorem proving engine Z3 [62] embraces a
sophisticated CHC solver Spacer [58, 34, 33]. Basic CHC solving techniques used
in Z3 are discussed in [21, 20]; property directed reachability is the key concept in
finding out fixed points and counterexamples.

1.1.2 Pointer Analysis

Pointer analysis collects information on which pointers can point to which
storage locations, as a part of static program analysis. It is widely used as pre-
processing for program verification. [18] gives a summary of techniques and
problems on pointer analysis. The SeaHorn verification framework performs a
field-, array-, and context-sensitive pointer analysis tailored for verification of
low-level C/C++ programs [15], which is inspired by data structure analysis
(DSA) [35]; a context-sensitive pointer analysis partitions memory into multiple
regions exploiting the information on call paths.

1.1.3 Array Theory

Array theory is one of the theories (of predicate logic) designed for the system
of SMT, or satisfiability modulo theories. In this theory, an array a is a mapping
from a set of indices (typically, the set of integers) to a set of elements, equipped
with read and write operations. The read operation takes out the value stored at
index i in array a (written as a[i]). The write operation creates the array such that
the value at index i is x and the values at the other indices are the same as array a
(written as a{i ◁ x}). There are some non-trivial decidable classes of satisfiability
problems in regard to array theory. More information on decidability about
array theory can be found in [6, 16, 13]. The Spacer CHC solver in the Z3 engine
can deal with arrays as in array theory.

1.1.4 Program Verification Tools

There are a number of program verification tools targeting real-world pro-
grams with pointers and destructive updates.

JayHorn [27, 28] is a CHC-based framework for verifying Java programs. It
first takes Java bytecode, and exerts many bytecode-level transformations us-
ing Soot [42] to simplify exception handling, virtual methods, control flows; it

4



then translates the bytecode into CHCs with a simple algorithm, and verify the
generated CHCs with an existing CHC solver, such as Eldarica [41] and Spacer.

SeaHorn [54, 14] is a fully automated analysis framework for LLVM-based
languages including C and C++, which also uses CHCs to describe verification
conditions. It takes LLVM IR bitcode, and performs bitcode-level optimizations
for verification. Then it emits verification conditions as CHCs from the optimized
LLVM IR bitcode; it models heaps using clever techniques such as one presented
in [15], as mentioned earlier. It finally performs verification on the generated
CHCs using a CHC solver such as Spacer; it also assists the CHC solver by pro-
viding numerical invariants with abstract-interpretation-based static analyzer
CRAB [55].

SMACK [57] is also a software verifier that takes LLVM IR. Unlike SeaHorn,
however, it does not use CHCs for describing verification conditions. It translates
IR into the Boogie intermediate verification language [45]; the tool for Boogie
optionally infers some invariants, and finally generates verification conditions
that are passed to an SMT solver (not a CHC solver).

1.2 Ownership Types

Ownership types refer to types controlled under a type system that employs
an idea called ownership. Simply put, ownership can be explained as follows:
multiple aliases to a resource may coexist, but only one of them can “own” the
full right of operation on the resource; although the right is uncopyable, it can
be “transferred” from one alias to another; in addition, some more advanced
systems allow multiple aliases to share the read access.

There are many studies related to ownership types. The paper [8] introduces
a formal type system for ownership types in an object-oriented programming
language, as a “flexible mechanism to limit the visibility of object references
and restrict access paths to objects”. Vault [10] and Cyclone [23] are safer di-
alects of the C programming language that make use of region-based systems,
which are related to ownership. L3 [1], System F◦ [36], Alms [64] and Mezzo
[2] are programming languages with substructural type systems that employ
ownership.

Furthermore, modern C++ (especially since C++11) [22] provides ownership-
related features such as smart pointers supporting the RAII (Resource acquisi-
tion is initialization) paradigm, and move semantics which enables transferring
ownership combined with rvalue references; while these features do encourage
safer coding practices, however, the type system of C++ still does not ensure
ownership-based safety. Generally speaking, application of an academically
studied ownership-based type system to a real-world programming language
often results in making the language too restrictive for practical use.

The Rust programming language [52] is a new2 programming language that
aggressively supports ownership types; it is a systems programming language
that allows efficient low-level memory operations under strong compile-time safety
guarantees. Whereas ownership-based type checking is quite strict, unsafe code
blocks loosen type checking and enable more flexible memory operations; and
through encapsulation as a library, especially by the use of traits (analogous
to interfaces of Java), the unsafe behaviors can be used by programmers in a
predictable, controlled way. This extensibility of Rust makes the language flexible
enough for producing efficient, practical code under great guarantees. Rust

2The first stable release (Rust 1.0) was released in 2015.

5



has been spreading its use, and it is used even for developing a full-featured
operating system [50] and a modern, high-performance browser engine [56].

In this paper, we extensively use Rust as a representative example of a pro-
gramming language with ownership types. In the following part of the paper, a
number of Rust code examples are presented, but the syntax of Rust is roughly
illustrated in comments so that those not familiar with Rust can understand the
code. For more information on Rust, [53] and [51] give detailed explanations.

1.2.1 Introduction to Rust-style Ownership Types

This subsection briefly explains Rust-style ownership types.
Owning pointers. First of all, when a variable x is typed T, x has ownership

on data of type T; for example, if we perform let mut x : (i32,i32,i32)=
(1,2,3);, variable x of a tuple of three 32-bit integers (i32,i32,i32) will be
initialized as data (1,2,3).3 When the data of type T is placed on the memory,4
we can interpret x as an implicit pointer to the data. In this sense, we regard x
as an owning pointer5 to the data.

Move and copy. When we perform let binding let mut y : T = x;, the
situation diverges by whether (data of) type T is copyable, indicated by Copy trait
in Rust.6 When T is copyable (e.g. a 32-bit integer), y is initialized as data copied
from x; x and y refer to different places as owned pointers. When T is not copyable
(e.g. a mutable reference, as explained later), a move, or transfer of ownership,
takes place; y refers to the same data that x used to refer to, and x completely
loses the power of ownership. To sum up, only one, unique owning pointer can
refer to each data.

References, lifetimes and (re)borrowing. A reference is a temporary alias to data
that some owning pointer already has control over. There are two types of
references, mutable and immutable; a mutable reference can mutate the data
that an owning pointer has, and an immutable reference can just read from
the data. As explained later, any references can be created just by borrowing or
reborrowing. Every reference is statically controlled under a lifetime, which is
represented in Rust as a variable of form ’a (starting with a single quote); for our
purpose, a lifetime can be regarded as the time limit for releasing the temporary
control (acquired by (re)borrowing) on the data.7 &’a mut T is the type of a
mutable reference, to data of type T controlled under lifetime ’a, and &’a T is
the type of an immutable reference. When variable mx has type &’a mut (i32,
i32,i32),8 for example, you can set its data simply by *x = (8,7,6);.9 While
some reference, mutable or immutable, is active, the corresponding owning
pointer gets shadowed. In addition, only two patterns are allowed on a presence
of references to each resource: there is only one mutable reference, or there are one

3Here, mut in let mut x indicates that the data of x can be mutated like x = (7,6,5);. If this
mut is eliminated, the data of x is not allowed to change.

4When the data is a 32-bit integer, it might be on some register in the hardware; when T is quite
big, however, such as a tuple of twelve 32-bit integers, the data is very likely to be on the memory.

5This is not a very common term. RustBelt [25] calls it an owned pointer, but the point is that
the pointer owns the data, rather than that the pointer is owned.

6In Rust’s terminology, “copying” means shallow copying, like simple memcpy in C; deeper
copying is called “cloning”, and clonability is indicated by Clone trait.

7As explained later in another footnote, this is not the case for newly introduced non-lexical
lifetimes.

8It of course means that mx has ownership on the address data of type &’a mut (i32,i32,i32),
but features like auto-(de)referencing in Rust make things much more complicated.

9You may wonder here what the type of *x is; it can be regarded as (i32,i32,i32), but it does
not behave like an owning pointer. Such things are just artfully and implicitly treated by Rust.

6



or more immutable references; thus mutable references cannot be copied. Lifetimes are
thus used for statically imposing these kinds of safety invariants. Finally, let us
see a little more on borrowing and reborrowing. References can be created by
borrowing from owning pointers. Given an owning pointer x of type T, you can
borrow a mutable reference from it by let mx : &mut T = &mut x; (you cannot
specify the lifetime here; it is implicitly controlled by Rust’s type system) and
an immutable reference by let ix : &T = &x;. References can also be created
by reborrowing from exiting mutable references. For example, you can reborrow
from a mutable reference mx by let mx’ : &mut T = &mut *mx;. We can thus
say that a lifetime indicates the end of borrowing or reborrowing.

Lifetime abstraction. Some functions in Rust receive references as inputs and
outputs. For example (as described later in Example A), you can write a function
that takes two mutable references to (different) integer data and returns the
reference with the larger integer value. In order to write these kinds of functions,
we use lifetime abstraction; we just add lifetime parameters to functions, which are
embodied into concrete lifetimes when the functions are called.

Box type and recursive types. Rust’s Box<T>, Box type, works as an explicit
owning pointer to some resource on the heap memory. You can take mutable
or immutable references from Box<T>. When the variable owning Box<T> is
dropped, the resource on the heap memory is released. Thus Box<T> works
similarly to simple T itself, but Box type is so helpful on defining recursive types.
A (singly linked) list type can be defined as enum List<T> Nil, Cons(T, Box<
List<T>>), where enum brings a tagged union (direct sum) and <T> introduces a
type parameter T; the type cannot be defined as enum List<T> Nil, Cons(T,
List<T>), because it makes the size of the type infinite. Thus Box type serves as
a kind of cushion for defining recursive types.

Splitting references. You can split a reference and obtain references to a smaller
region of the memory. For example, when you have a mutable reference to a pair
mx : &’a mut (i32,bool), you can split it to ma : &’a mut i32 and mb : &’b
mut bool by pattern matching let (ma, mb)= mx;; after this, you cannot use
mx anymore — mx is now split into ma and mb. This apparently simple feature of
Rust gives great expressive power; as shown in Example C, for example, you can
split a mutable reference to a (singly linked) list into a list of mutable references
to each element.

1.3 This Research

CHC-based verification taking advantage of ownership types has not been
studied well. This research achieves major progress in this area.

Chapter 2 gives an overview of our translation along with some examples.
Chapter 3 formalizes our translation through a newly introduced formal lan-
guage Calculus of Ownership and Reference (COR) corresponding to a basic subset
of Rust, and describes a conjecture on the correctness of the translation. Chapter 4
shows the results of an experiment and discusses the verification performance
achieved with our method.

7



Chapter 2

Overview of the Translation

This chapter provides an informal overview of our translation, with a number
of illustrative examples. It also compares our method with the conventional
address-based method.

2.1 Basic Ideas

When only owning pointers and immutable references are used and mutable
references are not used, the situation is quite easy. For example, consider the
following Rust code with a loop of destructive updates on owning pointers.
fn inc_loop<’a>(mut x: i32, iy: &’a i32) -> i32 {
// fn stands for a function , and i32 is a 32-bit integer type;
// ’mut x’ indicates that x can be mutated;
// the function finally returns x (the original value) + *iy
let mut i: i32 = 0;
while i < *iy { i += 1; x += 1; }
x
// Rust does not require ’return’ when returning values;
// it works like functional programming languages

}
fn check_inc_loop(x: i32, y: i32) -> i32 {
let res = inc_loop(x, &y);
// temporarily immutably borrow y,
// and call inc_loop to get the result r;
// the function terminates if y >= 0

res - (x + y)
// return the difference from the expected answer x + y

}

Naming the continuation from the while loop ‘while’, the program can be trans-
lated into the following set of CHCs. The immutable reference to an integer y,
named i y, is represented as a box (1-tuple) containing y, and written as ⟨y⟩.

inc-loop(x , i y , r) ⇐� while(0, x , i y , r)
while(i , x , ⟨y⟩, r) ⇐� i < y ∧ while(i + 1, x + 1, ⟨y⟩, r)
while(i , x , ⟨y⟩, r) ⇐� i ≥ y ∧ r � x

check-inc-loop(x , y , r) ⇐� inc-loop(x , ⟨y⟩, res) ∧ r � res − (x + y)
Destructive updating on owning pointers just can be seen as rebinding or shad-
owing for variables, as provided in purely functional languages.

In the presence of mutable references (or equivalently mutable borrowing), how-
ever, this kind of treatment does not work appropriately. Actually, our translation
treats mutable references in a novel manner. For example, consider the following

8



Rust code; inc_max takes two integer variables x and y, increment the larger one
via a pointer obtained by take_max, and return the pair of the two values.
fn take_max<’a>(mx: &’a mut i32, my: &’a mut i32) -> &’a mut i32 {
if(*mx >= *my) { mx } else { my }
// return the larger side of mx and my

}
fn inc_max(mut x: i32, mut y: i32) -> (i32, i32) {
// ’mut x’ and ’mut y’ mean that x and y can be mutated;
// the annotations are needed for mutable borrowing
{
let mx = &mut x; let my = &mut y;
// mutably borrow x as mx and y as my

let mz = take_max(mx, my); *mz += 1;
// take the larger side as mz and increment it;
// thereby either x or y is updated

} // end borrowing x as mx and y as my
(x, y) // return the pair of x and y

}

This program is quite simple but somewhat difficult to translate into CHCs. If we
try to represent mutable references as a box, we get stuck like this. (The symbol
? indicates a perplexing part.)

take-max(⟨x⟩, ⟨y⟩, r) ⇐� x ≥ y ∧ r � ⟨x⟩
take-max(⟨x⟩, ⟨y⟩, r) ⇐� x < y ∧ r � ⟨y⟩

inc-max(x , y , r) ⇐� take-max(⟨x⟩, ⟨y⟩, ⟨z⟩)
∧ ? � z + 1 ∧ r � (?, ?)

The problem is how to obtain the values of updated versions of x and y. The
value l + 1 should be the updated version of either x or y, but which? The
traditional method used addresses to determine “which”, but we conceived a
simpler way to resolve it: we just need to tag to each mutable reference the future,
returned value. The CHCs that our method yields are as follows.

take-max(⟨x , x∗⟩, ⟨y , y∗⟩, r) ⇐� x ≥ y ∧ y∗ � y ∧ r � ⟨x , x∗⟩
take-max(⟨x , x∗⟩, ⟨y , y∗⟩, r) ⇐� x < y ∧ x∗ � x ∧ r � ⟨y , y∗⟩

inc-max(x , y , r) ⇐� take-max(⟨x , x∗⟩, ⟨y , y∗⟩, ⟨z , z∗⟩)
∧ z∗ � z + 1 ∧ r � (x∗ , y∗)

Each mutable reference mx is represented as a special pair ⟨x , x∗⟩ of the current
value x and the future value x∗ that is returned at the end of the mutable borrow-
ing. Taking a future value may sound an astounding idea, but it is just what
ordinary CHC-based verification does; the output of a function is represented
as an argument of each uninterpreted predicate. In contrast to the conventional
address-based method, our translation employs a value-based method.

Summary. Mutable borrowing triggers switching of (full) ownership, which is
hard to manage with purely functional approaches. To deal with this situation,
our method takes the future value that is planned to be passed when switching
back the ownership (i.e. ending the mutable borrowing); each mutable reference
keeps both the current value and the future value. Informally speaking, the
future value is symbolically represented, and is passed around as the mutable
reference travels around; and the value is determined on dropping the mutable
reference (or giving up the ownership). This symbolical handling of future values
is a natural extension of the policy of representing the output of a function as an
argument of an uninterpreted predicate.

9



2.1.1 Operations on Mutable References Expressed in CHCs

This subsection gives an informal but detailed explanation of the method of
expressing operations on mutable references in CHCs. These ideas are the basis
of the formalization introduced in Chapter 3.

There are four types of basic operations on mutable references in Rust: (1)
creating a mutable reference by (re)borrowing, (2) updating the referent of a
mutable reference, (3) returning a mutable reference by dropping, and (4) splitting
a mutable reference handling a memory area into mutable references handling
subareas. In addition, splitting can be classified into three patterns: (4-a) getting
mutable references to the elements of a tuple, (4-b) getting a mutable reference to
the body of a tagged value, and (4-c) getting a mutable reference to the referent
of a pointer.

In our translation, the four types of operations on mutable references are
expressed in CHCs as follows.
(1) Creating To express borrowing of an owned value x, we take the return value
x∗ by existential quantification; the resulting mutable reference is ⟨x , x∗⟩, and the
updated version of the owned value is x∗. Likewise, to express reborrowing of
an existing mutable reference ⟨x , x∗∗⟩, we name the return value x∗ to get a new
mutable reference ⟨x , x∗⟩ along with the updated version of the existing mutable
reference ⟨x∗ , x∗∗⟩.
(2) Updating In order to express update of the value of a mutable reference
⟨x , x∗∗⟩ from x to x∗, we get ⟨x∗ , x∗∗⟩ as the updated version of the mutable
reference.
(3) Returning To express return of a mutable reference ⟨x , x∗⟩ by dropping, we
just add constraint x∗ � x.
(4) Splitting For (4-a), given a mutable reference to a tuple ⟨(x1 , . . . , xn), p∗⟩,
we obtain mutable references ⟨x1 , x1∗⟩, . . . , ⟨xn , xn∗⟩ and add constraint p∗ �

(x1∗ , . . . , xn∗). For (4-b), given a mutable reference to a tagged value ⟨A(y), x∗⟩
(where A is a data constructor, or a tag, of a tagged value), we obtain ⟨y , y∗⟩
taking a new value y∗, and append constraint x∗ � A(y∗). For (4-c), express-
ing dereference of a mutable reference to an owning pointer or an immutable
reference is analogous to (4-b); to express dereference of a mutable reference to
another mutable reference ⟨⟨y , y∗∗⟩, x∗⟩, we get a new mutable reference ⟨y , y∗⟩
taking a new value y∗, and add constraint x∗ � ⟨y∗ , y∗∗⟩.

2.1.2 Extensions of the Translation

This subsection describes extensions of our translation, which is not formal-
ized in Chapter 3.

Slices and Vectors

To extend our translation for slices (dynamically-sized views into a contiguous
sequence in the memory; there are two types of slices, represented as [T]) and
vectors (contiguous growable arrays, represented as Vec<T>), we need to use array
theory to represent slices and vectors, but the technique of our translation is still
applicable.

We can model both slices and vectors as an array a from natural numbers to
values, equipped with the size information n; let us write slices and vectors as
(a , n). Here we present some representative operations on slices and vectors.

Immutable access. index((a , n), i , x) (immutably access a slice or vector ⟨a , n⟩
at index i to obtain x; equivalent to Rust’s index of Index trait) can be expressed

10



in a CHC as follows.

index((a , n), i , x) ⇐� i < n ∧ x � a[i]
There are several ways to represent panics (exceptions), which here can be
triggered by out-of-bounds access; in the CHC representation here, panics
are expressed simply by returning no value; if i ≥ n, then no x satisfies
index((a , n), i , x).

Mutable access. index-mut
(
⟨(a , n), (a∗ , n∗)⟩, i , ⟨x , x∗⟩

)
(mutably access a mu-

table reference to a slice or vector ⟨(a , n), (a∗ , n∗)⟩ at index i to obtain ⟨x , x∗⟩;
equivalent to Rust’s index_mut of IndexMut trait) is expressed in a CHC as fol-
lows.

index-mut
(
⟨(a , n), (a∗ , n∗)⟩, i , ⟨x , x∗⟩

)
⇐� i < n ∧ n∗ � n
∧ x � a[i] ∧ a∗ � a{i ◁ x∗}

Note that when x∗ is determined (by dropping the mutable reference ⟨x , x∗⟩), a∗
is accordingly determined.

Pushing a value. push
(
⟨(a , n), (a∗ , n∗)⟩, x

)
(push value x to a mutably refer-

enced vector ⟨(a , n), (a∗ , n∗)⟩; equivalent to Rust’s push) is expressed in a CHC as
follows.

push
(
⟨(a , n), (a∗ , n∗)⟩, x

)
⇐� n∗ � n + 1 ∧ a∗ � a{n ◁ x}

Swapping two elements. swap
(
⟨(a , n), (a∗ , n∗)⟩, i , j

)
(swap two elements of in-

dex i and j on a mutably referenced slice or vector ⟨(a , n), (a∗ , n∗)⟩; equivalent to
Rust’s swap) is expressed in a CHC as follows.

swap
(
⟨(a , n), (a∗ , n∗)⟩, i , j

)
⇐� i < n ∧ j < n ∧ n∗ � n
∧ a∗ � a{i ◁ a[ j]}{ j ◁ a[i]}

Splitting. split-at-mut
(
⟨(a , n), (a∗ , n∗)⟩, i , ⟨(a◁ , n◁), (a◁∗ , n◁∗)⟩, ⟨(a▷ , n▷), (a▷∗ , n▷∗)⟩

)
(split a mutably referenced slice ⟨(a , n), (a∗ , n∗)⟩ at index i to obtain two mutable
referenced slices ⟨(a◁ , n◁), (a◁∗ , n◁∗)⟩ and ⟨(a▷ , n▷), (a▷∗ , n▷∗)⟩; equivalent to Rust’s
split_at_mut) is expressed in a CHC as follows, extending array theory with a
new primitive shift-left(a , i) (the array obtained by cutting off the first i elements
of array a).

split-at-mut
(
⟨(a , n), (a∗ , n∗)⟩, i , ⟨(a◁ , n◁), (a◁∗ , n◁∗)⟩, ⟨(a▷ , n▷), (a▷∗ , n▷∗)⟩

)
⇐� i < n ∧ n∗ � n ∧ n◁ � i ∧ n▷ � n − i
∧ a◁ � a ∧ a◁∗ � a∗
∧ a▷ � shift-left(a , i) ∧ a▷∗ � shift-left(a∗ , i)

If you would like to use the usual array theory, you can define the following
helper predicate copy-array(a◦ , i , a , j, n , a′) (which roughly means a′ � a◦{i ◁
a[ j]} · · · {i + (n − 1 − j) ◁ a[n − 1]}), and then simply replace a▷ � shift-left(a , i)
with copy-array(a▷◦ , 0, a , i , n , a▷) and do similarly for a▷∗ in the definition of split-
at-mut.

copy-array(a◦ , i , a , j, n , a′) ⇐� j � n ∧ a′ � a◦
copy-array(a◦ , i , a , j, n , a′) ⇐� j < n

∧ copy-array(a◦{i ◁ a[ j]}, i + 1, a , j + 1, n , a′)

RefCell

Rust’s RefCell<T> is a sharable mutable container for which borrow rules are
enforced by dynamic borrowing information: no reference, one mutable reference,

11



or n immutable references to the resource. The internal value of type T cannot
be accessed directly; you dynamically borrow (mutably or immutably) from an
immutable reference (which is sharable!) to a RefCell instance. In short, the internal
state of a RefCell instance can be mutated through shared references, which is
called interior mutability in Rust. Mutable and immutable references to RefCell
internal states are obtained through special wrapper types (RefMut<T> and Ref<T
>, respectively), because static lifetimes are not relevant and when the wrappers
are dropped they should update the borrowing information. Since Rust’s simple
static analysis is often too harsh for flexible memory operations, RefCell<T>
greatly serves for extending description ability of Rust.

For CHC-based verification supporting interior mutability provided by Rust’s
RefCell<T>, we can mix the conventional address-based approach with our
novel value-based approach.

The internal state of RefCell<T> is represented as a pair (x , c) of value x of
type T and a counter c; the counter can be 0 (there is no reference), −1 (there is
one mutable reference), or n > 0 (there are n immutable references). We give
an imaginary address i to each RefCell internal state, and keep a pool of RefCell
bodies as an array a from imaginary addresses i to RefCell bodies (xi , ci); in order
to manage pools of RefCell bodies efficiently, pointer analysis, as used in SeaHorn
[54, 14], can be applied here. We represent a RefCell instance simply as an address
i; we represent an immutable reference wrapper to a RefCell internal state of
address i as immuti , and a mutable reference wrapper as muti . As indicated
below, RefCell operations can be expressed as a function that additionally takes
a mutable reference to a relevant pool of RefCell bodies ⟨a , a∗⟩ or an immutable
reference to it ⟨a⟩.

Preparation for a access. pre-borrow(i , ⟨a , a∗⟩, r) (obtain a immutable reference
wrapper for address i, under (a mutable reference to) a RefCell pool ⟨a , a∗⟩;
equivalent to Rust’s borrow for RefCell<T>) is expressed as a CHC as follows.

pre-borrow(i , ⟨a , a∗⟩, r) ⇐� (x , c) � a[i] ∧ c ≥ 0
∧ a∗ � a{i ◁ (x , c + 1)} ∧ r � immuti

Similarly, pre-borrow-mut(i , ⟨a , a∗⟩, r) (obtain a mutable reference wrapper for
address i, under a mutable reference to a pool ⟨a , a∗⟩; corresponding to Rust’s
borrow_mut for RefCell<T>) is expressed as a CHC as follows.

pre-borrow-mut(i , ⟨a , a∗⟩, r) ⇐� (x , 0) � a[i]
∧ a∗ � a{i ◁ (x ,−1)} ∧ r � muti

Genuine access. borrow(⟨immuti⟩, ⟨a⟩, r) (obtain a genuine immutable ref-
erence through (an immutable reference to) an immutable reference wrapper
⟨immuti⟩ under (an immutable reference to) a pool ⟨a⟩; corresponding to Rust’s
borrow for Ref<T>) is expressed as a CHC as follows.

borrow(⟨immuti⟩, ⟨a⟩, r) ⇐� (x , c) � a[i] ∧ r � ⟨x⟩
Analogously, borrow-mut(⟨muti⟩, ⟨a , a∗⟩, r) (obtain a genuine mutable refer-
ence through (a superficial mutable reference to) a mutable reference wrapper
⟨muti ,muti⟩ under (a mutable reference to) a pool ⟨a , a∗⟩; corresponding to
Rust’s borrow_mut for RefMut<T>) is expressed as a CHC as follows.

borrow(⟨muti ,muti⟩, ⟨a , a∗⟩, r) ⇐� (x ,−1) � a[i]
∧ r � ⟨x , x∗⟩ ∧ a∗ � a{i ◁ x∗}

Note that a∗ contains the future value for address i; the dynamic counting on

12



borrowing ensures the validity of this remedy.
Drop of a reference wrapper. drop-immut(immuti , ⟨a , a∗⟩) (drop an immutable

reference wrapper immuti , under (a mutable reference to) a pool ⟨a , a∗⟩; corre-
sponding to Rust’s drop for Ref<T>) is expressed as a CHC as follows.

drop-immut(immuti , ⟨a , a∗⟩) ⇐� (x , c) � a[i] ∧ a∗ � a{i ◁ (x , c − 1)}
Analogously, drop-mut(muti , ⟨a , a∗⟩) (drop a mutable reference wrapper muti ,
under (a mutable reference to) a pool ⟨a , a∗⟩; corresponding to Rust’s drop for
RefMut<T>) is expressed as a CHC as follows.

drop-mut(muti , ⟨a , a∗⟩) ⇐� (x ,−1) � a[i] ∧ a∗ � a{i ◁ (x , 0)}

Closures

Using the technique of defunctionalization [40, 9], a higher-order program
using closures can be transformed into a first-order program without closures;
imitating the way closures are treated in the real-world hardware, closures are
simply transformed into concrete data structures, with some identifiers assigned
to function pointers.

Rust’s closures are a bit complex compared to other common languages, since
ownership of the data in closures should be taken care of; Rust has three types for
closures, Fn, FnMut and FnOnce. The defunctionalization technique, nevertheless,
can deal with Rust’s closures, since only the concrete representation of closures
matters.

The defunctionalization strategy still has a strong limitation: the functions
that can be dealt with as closures are limited to ones already appearing in the
program. If you are interested in higher-order properties (e.g. a general property of
a higher-order function that takes two closures and composes them as a function),
you can use higher-order CHCs as proposed in [7].

2.2 Examples

To demonstrate our translation, we give four examples in this section.
Letters in variable names indicate types: p stands for a pointer T* in the C

language; m stands for a mutable reference &’a mut T, l for a list List<T>, and t
for a tree Tree<T> in Rust.

For Example C and Example D, which entails complex recursions, we discuss
useful invariants on Section 4.2.

Example A: Selecting from Mutable References

We first revisit the very simple example that is previously mentioned; it
showcases notable features of our translation. We here compare our method
with the conventional address-based method.

Let us write the procedures in the C programming language.
int* take_max(int* px, int* py) {
if(*px >= *py) return px; else return py;
// return the larger side of mx and my

}
struct Pair { int x, y; }; // a pair of integers
Pair inc_max(int x, int y) {
int* pz = take_max(&x, &y); *pz += 1;
// take the larger side as pz and increment it
// thereby either x or y is updated

13



Pair res; res.x = x; res.y = y;
return res; // return the pair of x and y

}

Translating this C code into CHCs is not very straightforward. In this situation,
we can obtain the following set of CHCs by the address-based conventional
method (as used in SeaHorn), which gives imaginary addresses 0 and 1 to x and
y respectively. Each version of the memory state of x and y is represented as
an array (written as a and a′); a◦ stands for an uninitialized array (which can be
taken just by universal quantification).

take-max(px , p y , r, a) ⇐� a[px] ≥ a[p y] ∧ r � px
take-max(px , p y , r, a) ⇐� a[px] < a[p y] ∧ r � p y

inc-max(x , y , r) ⇐� a � a◦{0 ◁ x}{1 ◁ y} ∧ take-max(0, 1, pz , a)
∧ a′ � a{pz ◁ a[pz] + 1}
∧ r � (a′[0], a′[1])

The same procedures can be written in Rust as follows; since this Rust code
has already appeared in the previous part of the paper, the comments are omitted
here.
fn take_max<’a>(mx: &’a mut i32, my: &’a mut i32) -> &’a mut i32 {
if(*mx >= *my) { mx } else { my }

}
fn inc_max(mut x: i32, mut y: i32) -> (i32, i32) {
{
let mx = &mut x; let my = &mut y;
let mz = take_max(mx, my); *mz += 1;

}
(x, y)

}

As previously described, the Rust code is translated into the following CHCs by
our method. The point is that our method does not use imaginary addresses and
arrays emulating memory.

take-max(⟨x , x∗⟩, ⟨y , y∗⟩, r) ⇐� x ≥ y ∧ y∗ � y ∧ r � ⟨x , x∗⟩
take-max(⟨x , x∗⟩, ⟨y , y∗⟩, r) ⇐� x < y ∧ x∗ � x ∧ r � ⟨y , y∗⟩

inc-max(x , y , r) ⇐� take-max(⟨x , x∗⟩, ⟨y , y∗⟩, ⟨l , l∗⟩)
∧ l∗ � l + 1 ∧ r � (x∗ , y∗)

By unfolding take-max and rearranging formulae a little, you will get the follow-
ing set of CHCs on inc-max.

inc-max(x , y , r) ⇐� x ≥ y ∧ r � (x + 1, y)
inc-max(x , y , r) ⇐� x < y ∧ r � (x , y + 1)

Example B: Updating a Pair via Mutable References

This example goes a little further than Example A. The main focus is put on
splitting of a mutable reference to structured data.

As the previous example, we first present the procedures in C code, which
does not use ownership types. inc_max_dec_min updates a pair of integers (of
type struct Pair) via a pair of pointers to integers (of type struct PtrPair)
supplied by take_max_min; the larger value of the pair is incremented and the
smaller decremented.

14



struct Pair { int x, y; }; // a pair of integers
struct PtrPair { int *px, *py; }; // a pair of pointers to integers
struct PtrPair take_max_min(struct Pair* pp) {
struct PtrPair res;
if(pp->x >= pp->y) { res.px = &(pp->x); res.py = &(pp->y); }
else { res.px = &(pp->y); res.py = &(pp->x); }
// pp->x is a shorthand for (*pp).x, and pp->y for (*pp).y;
// res.px points to the larger side of *pp, and res.py the smaller

return res;
}
struct Pair inc_max_dec_min(struct Pair p) {
struct PtrPair q = take_max_min(&p);
*(q.px) += 1; *(q.py) -= 1;
// increment the referent of q.px, and decrement of q.py

return p;
}

This C code is translated into the following set of CHCs by the conventional
method. Each version of the memory state of the integer pair is expressed as an
array (written as a, a′ and a′′).

take-max-min(px , p y , r.a) ⇐� a[px] ≥ a[p y] ∧ r � (px , p y)
take-max-min(px , p y , r.a) ⇐� a[px] < a[p y] ∧ r � (p y , px)

inc-max-dec-min((x , y), r) ⇐� a � a◦{0 ◁ x}{1 ◁ y}
∧ take-max-min(0, 1, (pz , pw), a)
∧ a′ � a{pz ◁ a[pz] + 1}
∧ a′′ � a′{pw ◁ a′[pw] − 1} ∧ r � (a′′[0], a′′[1])

This program can be expressed in Rust as follows. The following Rust code
contains the four types of operations on mutual references: creating, splitting,
updating and returning.
fn take_max_min <’a>(mp: &’a mut (i32, i32))

-> (&’a mut i32, &’a mut i32) {
let (mx, my) = mp; // simply split the mutable reference mp
if *mx >= *my { (mx, my) } else { (my, mx) }
// put the larger side on the left

}
fn inc_max_dec_min(mut p: (i32, i32)) -> (i32, i32) {
{
let mp: &mut (i32, i32) = &mut p; // mutably borrow the pair p
let (mz, mw) = take_max_min(mp);
// split mp into the larger and the smaller sides

*mz += 1; *mw -= 1;
// increment the larger value, and decrement the smaller

} // end borrowing p as mp
p

}

By our translation, you will get a set of CHCs like this. Note that, in definition
of take-max-min, a mutable reference to a pair of integers ⟨(x , y), (x∗ , y∗)⟩ is split
into two mutable references to an integer ⟨x , x∗⟩ and ⟨y , y∗⟩.
take-max-min

(
⟨(x , y), p∗⟩, r

)
⇐� (x∗ , y∗) � p∗ ∧ x ≥ y ∧ r � (⟨x , x∗⟩, ⟨y , y∗⟩)

take-max-min
(
⟨(x , y), p∗⟩, r

)
⇐� (x∗ , y∗) � p∗ ∧ x < y ∧ r � (⟨y , y∗⟩, ⟨x , x∗⟩)

inc-max-dec-min
(
p , r

)
⇐� take-max-min

(
⟨p , p∗⟩, (⟨z , z∗⟩, ⟨w , w∗⟩)

)
∧ z∗ � z + 1 ∧ w∗ � w − 1 ∧ r � p∗

By unfolding take-max-min and rearranging formulae a little, you will get the

15



following set of CHCs on inc-max-dec-min.

inc-max-dec-min
(
(x , y), (x∗ , y∗)

)
⇐� x ≥ y ∧ x∗ � x + 1 ∧ y∗ � y − 1

inc-max-dec-min
(
(x , y), (x∗ , y∗)

)
⇐� x < y ∧ x∗ � x − 1 ∧ y∗ � y + 1

Example C: Update of a List of Integers via a List of Mutable References

The following Rust code uses a (singly linked) list of mutable references to update
a list of integers. sort_carve_list takes a list of integers lx and decreases the
i-th smallest element of lx by i − 1 for each i. For that purpose, it takes out a list
of mutable references to the elements of lx through split_mut_list, and sort
the new list by sort_list.1
#![feature(box_syntax , box_patterns)]
enum List<T> { Nil, Cons(T, Box<List<T>>) }
// recursive data type for a list;
// Box<> is used for finiteness of the type size

fn split_mut_list <’a>(mlx: &’a mut List<i32>) -> List<&’a mut i32> {
// given a mutable reference to a list,
// split them into mutable references to its elements ,
// and wrap them in a list
match mlx {
List::Nil => List::Nil,
List::Cons(mx, mlx2) => List::Cons(mx, box split_mut_list(mlx2))

}
}
fn insert_list <’a>(mx: &’a mut i32, lmy: List<&’a mut i32>)

-> List<&’a mut i32> {
// helper function for sort_list;
// insert mx into a sorted list lmx
match lmy {
List::Nil => List::Cons(mx, box List::Nil),
List::Cons(my, box lmy2) =>
if *mx <= *my { List::Cons(mx, box List::Cons(my, box lmy2)) }
else { List::Cons(my, box insert_list(mx, lmy2)) }

}
}
fn sort_list <’a>(lmx: List<&’a mut i32>) -> List<&’a mut i32> {
// sort a list of mutable references by referent values
match lmx {
List::Nil => List::Nil,
List::Cons(mx, box lmx2) => insert_list(mx, sort_list(lmx2))

}
}
fn carve_list <’a>(i: i32, lmx: List<&’a mut i32>) {
// decrease referents of list lmx by i, i+1, i+2, ... respectively
match lmx {
List::Nil => {}
List::Cons(mx, box lmx2) => { *mx -= i; carve_list(i+1, lmx2) }

}
}
fn sort_carve_list(mut lx: List<i32>) -> List<i32> {
// decrease the i-th smallest element of lx by i-1 for each i
carve_list(0, sort_list(split_mut_list(&mut lx)));
// temporarily mutably borrow lx

lx
}

This code is translated into the following set of CHCs by our translation. Op-
erations on lists are written in the Prolog style: [x1 , . . . , xn] is an extensional

1Since apostrophe ’ cannot be used for variable names in Rust, 2 is added at the end instead.

16



notation (particularly [] is a nil), and [x |lx] is a cons of head x and tail lx.

split-mut-list(⟨[], lx∗⟩, r) ⇐� lx∗ � [] ∧ r � []
split-mut-list(⟨[x |lx′], lx∗⟩, r) ⇐� lx∗ � [x∗ |lx′

∗]
∧ split-mut-list(⟨lx′, lx′

∗⟩, r′)
∧ r � [⟨x , x∗⟩|r′]

insert-list(mx , [], r) ⇐� r � [mx]
insert-list(⟨x , x∗⟩, [⟨y , y∗⟩|lm y′], r) ⇐� x ≥ y ∧ r � [⟨x , x∗⟩|[⟨y , y∗⟩|lm y′]]
insert-list(⟨x , x∗⟩, [⟨y , y∗⟩|lm y′], r) ⇐� x < y

∧ insert-list([⟨x , x∗⟩|lm y′], r′)
∧ r � [m y |r′]

sort-list([], r) ⇐� r � []
sort-list([mx |lmx′], r) ⇐� sort-list(lmx′, r′) ∧ insert-list(mx , r′, r)

carve-list(i , []) ⇐� ⊤
carve-list(i , [⟨x , x∗⟩|lmx′]) ⇐� x∗ � x − i ∧ carve-list(i + 1, lmx′)

sort-carve-list(lx , r) ⇐� split-mut-list(⟨lx , lx∗⟩, r′)
∧ sort-list(r′, r′′) ∧ carve-list(r′′) ∧ r � lx∗

Each element is separately treated by the pair representing the mutable refer-
ence. Unboundedly many mutable references are scrambled by sorting, but by our
method updates on mutable references are naturally reflected into the value
after borrowing.

With the use of clever, non-trivial techniques (for automated verification), the
Rust code can also be expressed in CHCs as follows in an address-based manner:
the list of mutable references are expressed as a list of addresses. For distinction,
we give suffix ‘-a’ to each uninterpreted predicate.

split-mut-list-a(i , lx , r) represents a function that receives a list of integers lx
with an auxiliary argument i, and returns the tuple of the length of the list, the
array that maps addresses to integers, and the list of addresses; elements of lx
are given address i , i + 1, i + 2, . . . respectively. a◦ represents an uninitialized
array (simply taken by universal quantification).

We use an additional uninterpreted predicate restore-list-a(i , l , a , r), which
represents a function that takes the target index l and the array a with an auxiliary
argument i, and obtains a list of integers with values a[i], a[i + 1], . . . , a[l − 1].

split-mut-list-a(0, [], r) ⇐� r � (0, [], a◦)
split-mut-list-a(i , [x |lx], r) ⇐� split-mut-list-a(i + 1, lx , (l′, lp′, a′))

∧ r � (l′ + 1, [i |lp′], a′{i ◁ x})

insert-list-a(p , [], r, a) ⇐� r � [p]
insert-list-a(p , [q |lq], r, a) ⇐� a[p] ≤ a[q] ∧ r � [p |[q |lq]]
insert-list-a(p , [q |lq], r, a) ⇐� a[p] > a[q] ∧ insert-list-a(p , lq , r′, a)

∧ r � [q |r′]

sort-list-a([], r, a) ⇐� r � []
sort-list-a([p |lp], r, a) ⇐� sort-list-a(lp , r′, a) ∧ insert-list-a(p , r′, r, a)

carve-list-a(i , [], a , a∗) ⇐� a∗ � a
carve-list-a(i , [p |lp], a , a∗) ⇐� carve-list-a(i + 1, a{i ◁ a[p] − i}, lp , a∗)

17



restore-list-a(i , l , r, a) ⇐� i � l ∧ r � []
restore-list-a(i , l , r, a) ⇐� i < l ∧ restore-list-a(i + 1, l , r′, a) ∧ r � [a[i]|r′]

sort-carve-list-a(lx , r) ⇐� split-mut-list-a(0, lx , (l , lp , a))
∧ sort-list-a(lp , lq , a)
∧ carve-list-a(0, lq , a , a∗)
∧ restore-list-a(0, l , r, a∗)

Example D: Update of a Tree of Integers via a List of Mutable References

In this example, a (binary) tree of integers is updated using a list of mutable
references. For these kinds of operations on trees, the traditional address-based
translation is very likely to generate complicated CHCs, since it is rather hard to
restore a tree of integers from an array simulating the memory state.

Consider the following Rust code. carve_bfs_tree visits elements on a tree
by breadth first search and decreases them by 0, 1, 2, . . . respectively; it uses
go_tree as a helper recursive function. For breadth first search, it uses purely
functional queue with operations push_queue and pop_queue. For simplicity
of types, the queue operations are described under type polymorphism on the
element type. Queue is implemented as a basic purely functional data structure
known as “Banker’s Queue”, for which queue operations work in amortized
linear time; for more information, see [37].
#![feature(box_syntax , box_patterns)]
enum List<T> { Nil, Cons(T, Box<List<T>>) }
// recursive data type for a list

type Queue<T> = (List<T>, List<T>);
// Banker’s Queue;
// ([x1,...,xm], [y1,...,yn]) represents a queue
// of elements x1,...,xm,yn,...,y1

fn push_queue <T>(que: Queue<T>, z: T) -> Queue<T> {
// push an element to the back of a queue
let (lx, ly) = que; (lx, List::Cons(z, box ly))

}
fn reverse_list <T>(lx: List<T>, ly: List<T>) -> List<T> {
// reverse_list([x1,...,xm],[y1,...,yn])
// is equal to [xm,...,x1,y1,...,yn]
match lx {
List::Nil => ly,
List::Cons(x, box lx2) => reverse_list(lx2, List::Cons(x, box ly))

}
}
fn pop_queue <T>(que: Queue<T>) -> Option <(T, Queue<T>)> {
// pop an element from the front of a queue
// and return it with the remaining queue;
// None is returned when que is empty
let (lx, ly) = que;
match lx {
List::Nil => match reverse_list(ly, List::Nil) {
List::Nil => None,
List::Cons(y, box ly2) => Some((y, (ly2, List::Nil)))

},
List::Cons(x, box lx2) => Some((x, (lx2, ly)))

}
}
enum Tree<T> { Leaf, Node(Box<Tree<T>>, T, Box<Tree<T>>) }
// recursive data type for a tree

fn go_tree<’a>(i: i32, que: Queue<&’a mut Tree<i32>>) {
// helper function for carve_bfs_tree;
// progress breadth first search on a tree using a queue

18



// and decrease elements by i, i+1, i+2, ... respectively
match pop_queue(que) {
None => {},
Some((mtx, que2)) => match mtx {
Tree::Leaf => go_tree(i, que2),
Tree::Node(mty, mx, mtz) => {
*mx -= i;
go_tree(i + 1, push_queue(push_queue(que2, mty), mtz))

}
}

}
}
fn carve_bfs_tree(mut tx: Tree<i32>) -> Tree<i32> {
// visit elements on a tree by breadth first search
// and decrease them by 0, 1, 2, ... respectively
go_tree(0, push_queue((List::Nil, List::Nil), &mut tx));
// temporarily mutably borrow tx
// and start go_tree with a single-element queue

tx
}

This code is translated into the following set of CHCs. Data constructors None,
Some, Leaf and Node are used in the description; note that Rust’s Box<T> type is
ignored in representing trees.

push-queue
(
(lx , l y), z , r

)
⇐� r � (lx , [z , l y])

reverse-list([], l y , r) ⇐� r � l y
reverse-list([x |lx′], l y , r) ⇐� reverse-list(lx′, [x |l y], r)

pop-queue
(
([], l y), r

)
⇐� reverse-list(l y , [], []) ∧ r � None

pop-queue
(
([], l y), r

)
⇐� reverse-list(l y , [], [y |l y′])
∧ r � Some

(
(y , (l y′, []))

)
pop-queue

(
([x |lx′], l y), r

)
⇐� r � (x , (lx′, l y))

go-tree(i , que) ⇐� pop-queue(que ,None)
go-tree(i , que) ⇐� pop-queue

(
que , Some(⟨Leaf, Leaf⟩, que′)

)
∧ go-tree(i , que′)

go-tree(i , que) ⇐� pop-queue
(
que ,

Some
(
⟨Node(t y , x , tz),Node(t y∗ , x∗ , tz∗)⟩, que′

) )
∧ x∗ � x − i
∧ push-queue(que′, ⟨t y , t y∗⟩, que′′)
∧ push-queue(que′′, ⟨tz , tz∗⟩, que′′′)
∧ go-tree(i + 1, que′′′)

carve-bfs-tree(tx , r) ⇐� go-tree
(
0, push-queue

(
([], []), ⟨tx , tx∗⟩

) )
∧ r � tx∗

19



Chapter 3

Formalization of the Translation

In this chapter, our translation is fully formalized under a new formal lan-
guage Calculus of Ownership and Reference (COR) corresponding to a basic subset
of Rust, and a conjecture on the correctness of the translation is presented.

3.1 Calculus of Ownership and Reference

Real-world Rust has many complex features. A number of formalizations of
Rust have been proposed such as Patina [39] and λRust [25]; however, they are
still somewhat complex for our purpose.

We define here Calculus of Ownership and Reference (COR) to clarify our trans-
lation of programs with ownership types into sets of CHCs. COR corresponds
to a basic subset of Rust, including ownership, (re)borrowing, lifetimes (along
with lifetime polymorphism), Box<T>, tuples, sum types, recursive types, and
basic arithmetic, excluding particularly uninitialized variables, slices and vectors,
interior mutability, closures,1 traits (analogous to Java’s interfaces), concurrency,
unsafe blocks, auto-(de)referencing, type polymorphism, type inference, lifetime
inference and non-lexical lifetimes.2

COR is designed so that the timings of (re)borrowing and variable dropping
are explicitly described, which clarifies our translation later. We provide syntax,
examples, type checking, and operational semantics of COR in this section.

3.1.1 Syntax

Lifetime and Type34

α, β ::� (lifetime variable)

(lifetime) ψ, φ ::� α | ∧(ψ1 , . . . , ψn) (earliest of lifetimes)

(reference authority) B ::� mut (mutable) | immut (immutable)

(pointer authority) A ::� own (owning pointer) | Bψ (reference)

X,Y ::� (type variable)

1As discussed in Section 2.1.2, we can extend our formalization for slices and vectors, RefCell,
and closures. They are ignored here to keep the formalization clear and simple.

2With non-lexical lifetimes recently introduced in Rust, lifetimes should be regarded as a set of
program points; thus switching of ownership may happen multiple times for each lifetime (or each
(re)borrowing), which obfuscates our translation to CHCs.

3The symbol ψ comes from Ancient Greek ψυχή (life, soul, mind), the origin of Latin psychē.
4A lifetime ∧(ψ1 , . . . , ψn) can be written as ψ1 ∧ · · · ∧ ψn . A type +(T1 , . . . , Tn) can be written

as T1 + · · · + Tn and
∑n

i�1 Ti , and ×(T1 , . . . , Tn) as T1 × · · · × Tn and
∏n

i�1 Ti .

20



(type) T ::� X | int (integer) | A T (pointer) | µX.T (recursive type)
| +(T1 , . . . , Tn) (sum) | ×(T1 , . . . , Tn) (product)

Lifetimes. In our terminology on COR, lifetimes are treated as a time point (not
time range) that can indicate the end of some (re)borrowing; this is slightly different
from how lifetimes are treated in the standard Rust terminology. Unlike Rust,
lifetime variables are all explicitly named. As indicated later in type-checking
rules, lifetime variables are introduced either by instruction intro α (as a local
lifetime variable; local within a function) or by a function signature (as a lifetime
parameter).

Pointers. An owning pointer own T represents full ownership of a region in the
heap and corresponds to Rust’s box T.5 A reference Bψ T represents temporary
access (valid until lifetime ψ) to a region in the heap that is owned by an owning
pointer own T; there are two types of references, a mutable reference mutψ T (which
corresponds to Rust’s &’psi mut T) and an immutable reference immutψ T (which
corresponds to Rust’s &’psi T).

Recursive types. We call a type not used as a substructure of a larger type
(e.g. variable types and function return types) a complete type. For any complete
type, every appearance of type variables should be bound by µ, and also guarded
by a pointer type (i.e. contained in a pointer type) for the sake of finiteness and
definiteness of type sizes. Types such as µX. int+X (which has an infinite size) and
µX.X (which has an indefinite size) are prohibited.

Convenient notation. The type ×(), or the unit type, can be written as ∗. In
addition, we can write ∗ + ∗, or the boolean type, as bool.

Instruction6

x , y , z ::� ((data) variable)

f ::� (function name)

(binary operation on integers) o ::� + | − | · | · · ·
(binary relation on integers) r ::� ≤ | ≥ | · · ·

(instruction) I ::� let y � n (creating an integer)
| let y � x o x′ (binary operation on integers)
| let y � x r x′ (binary relation on integers)
| let y � x (renaming) | let y � copy x (copying)
| let y � repl x (replicating an immutable reference)
| let y � mut bor x till ψ ((re)borrowing a mutable reference)
| let y � ref x (creating a box) | let y � deref x (dereferencing)

| let y � injT
i x (creating a tagged data)

| let y � (x1 , . . . , xn) (creating a tuple)
| let (y1 , . . . , yn) � x (splitting a tuple)
| let y � f ⟨ψ1 , . . . , ψm⟩(x1 , . . . , xn) (function call)
| swap(x , y) (swapping referents of pointers)
| drop x (dropping a variable)
| immut x (altering a mutable reference into an immutable reference)

5We simply assume that all non-address data is allocated in the heap and that the stack just
traces addresses of variables.

6Variables appearing in an instruction should be mutually distinct (for simplicity of formal
definitions).

21



| x as A T (retyping)
| intro α (introducing a local lifetime variable)
| now α (eliminating a local lifetime variable)

An instruction represents an atomic operation. In order to simplify type-
checking rules, nested expressions (in usual languages) are decomposed into
sequences of instructions. Here are a few notes on instructions.

Variables as pointers. Unlike Rust, every variable is a pointer (an owning pointer
or a reference), but it behaves as its referent on the surface. In addition, arguments of
a function call are pointers.7 Reference instruction let y � ref x creates an owning
pointer to a pointer, and dereference instruction let y � deref x dereferences a
pointer to a pointer.

Let binding. As indicated later in type-checking rules, variables are introduced
just by let-binding instructions (i.e. instructions of form let · · · � · · ·). Variables
on the right-hand side of let-binding instructions are eliminated, except for
let y � x o x′, let y � x r x′, let y � copy x and let y � repl x. In particular,
through a function call let y � f ⟨· · ·⟩(x1 , . . . , xn), the pointers x1 , . . . , xn passed
as arguments are taken away by the called function.

Drop. Variables are also eliminated by drop x (equivalent to Rust’s mem::
drop(x)). When dropping an owning pointer, the acquired data in the heap is
released. Each reference should be dropped before the advent of the binding
lifetime. Unlike Rust, the dropping of variables is explicitly stated.

Local lifetime variables. They are introduced by intro α (α is introduced as a new
local lifetime variable strictly smaller than any existing local lifetime variables) and
eliminated by now α before returning from a function. Local lifetime variables
are strictly smaller than lifetime parameters, since lifetime parameters outlive
the function.

Swap as a destructive update. Destructive updates are attained merely by
swap(x , y) (equivalent to Rust’s mem::swap(x,y)). As indicated later in type-
checking rules, x should be a mutable reference, and y can be either an owning
pointer or a mutable reference.8 Swapping is adopted as a primitive instead of
substitution mainly because substitution involves dropping of the original value; in
addition, swapping is difficult to realize with substitution in a situation where
uninitialized variables are not allowed.

Immutable references. An immutable reference y can be (re)borrowed by the
following steps: (1) (re)borrow a mutable reference by let y � mut bor xtillψ, and
(2) alter it to an immutable reference by immut y. An immutable reference can be
replicated by let y � repl x,9 which is different from instruction let y � copy x,
which copies a referent on the memory and creates an owning pointer.

7This is similar to but slightly different from λRust, where every variable is either a pointer or
an integer value, and arguments of a function call are owning pointers.

8We do not need swap for two owning pointers, since the same effect is given by swapping
variable names using renaming instruction let y � x. Swap for a mutable reference and an owning
pointer can also be excluded, since it can be reduced to swapping for two mutable references by
temporarily borrowing an owning pointer.

9Replication instruction can be excluded, since the same effect can be achieved by the following
sequential execution of instructions: let ox � ref x; let o y � copy ox; let x � deref ox; let y �

deref o y.

22



Large Structures10

L ::� (label)

(possibly claiming a variable) x̃ , ỹ ::� x (claiming) | − (not claiming)

(statement) S ::� I; goto L (instruction) | return x (returning a value)
| match x {inj1 ỹ1: goto L1; . . . ; injn ỹn : goto Ln} (branching by a tag)

(function signature) Σ ::� ⟨α1 , . . . , αm | αa1 ≤ αb1 , . . . , αam′ ≤ αbm′ ⟩
(x1: A1 T1 , . . . , xn : An Tn) → A′ T′

(function) F ::� fn f Σ {entry: S0 L1: S1 · · · Ln : Sn}
(program) P ::� F1 · · · Fn

Labels. Control flows (such as sequential executions, branching and loops)
are expressed solely with labels and goto directions for simplicity of formal
description. Each label can be regarded as a program point, and also as continuation
under a fixed context of typed variables.11 Continuations behave similarly to
functions, but we support continuations separately because functions work as a
boundary of (re)borrowing, lifetime parameters and local lifetime variables.

Function signatures. In a function signature, the former part ⟨α1 , . . . , αm | αa1 ≤
αb1 , . . . , αam′ ≤ αbm′ ⟩ introduces lifetime parameters along with constraints on
them; and all lifetime variables appearing in the latter part (x1: An Tn , . . . , xn :
An Tn) → A′ T′ should be introduced by the preceding part.

Function bodies. A function has one or more labeled statements in its body
{· · ·}; the first one with label entry is the entry point.

3.1.2 Examples

Syntax Sugar on Labels, Instructions and Statements

The following syntax sugar on labels, instructions and statements is used
for writing examples; it is not used for other formal descriptions but helps to
understand COR a lot.

Labels of statements can be omitted when not referred to by goto. Sequential
executions can be indicated by semicolons: I1; · · · ; In ; S in place of a statement
is a shorthand for I1; goto L2 L2: I2; goto L3 · · · Ln : In ; goto Ln+1 Ln+1: S (for
some fresh labels L2 , . . . , Ln+1). In addition, match x {inj1 ŷ1: S1 · · · injn ŷn : Sn}
is a shorthand for match x {inj1 ŷ1: goto L1 · · · injn ŷn : goto Ln} L1: S1 · · · Ln :
Sn (for some fresh labels L1 , . . . , Ln ; here statements S1 , . . . , Sn may contain
aforementioned sequential executions).

Examples

To demonstrate the syntax of our language, we translate functions written in
Rust from Section 2.2 into COR, using the syntax sugar introduced above. In the
following examples, List T is a shorthand for µX.∗ + T × own X, and Cons T for
T × own List T. Letters in variable names indicate types: m stands for mutα, o
for own, l for List, c for Cons, b for bool, and u for ∗.

10In a function, the names of lifetime parameters should be mutually distinct, and so should the
names of labels. In a program, the names of functions should be mutually distinct.

11This kind of continuation corresponds to a continuation in λRust introduced by letcont,
though sequential executions are separately supported in λRust.

23



The functions take_max and inc_max in Example A can be written in COR as
follows.

fn take-max⟨α |⟩(mx: mutα int,m y: mutα int) → mutα int {
let ob � mx ≥ m y;
match ob {

inj0−: drop ob; drop m y; return mx
inj1−: drop ob; drop mx; return m y

}
}
fn inc-max⟨|⟩(ox: own int, o y: own int) → own (int × int) {

intro α; let mx � mut bor ox till α; let m y � mut bor o y till α;
let ml � take-max⟨α⟩(mx ,m y);
let o1 � 1; let ol′ � ml + o1; drop o1; swap(ml , ol′); drop ol′;
now α; let or � (ox , o y) drop ox; drop o y; return or

}
Without sugar syntax, the function take-max looks like this.

fn take-max⟨α |⟩(mx: mutα int,m y: mutα int) → mutα int {
entry: let ob � mx ≥ m y; goto Lmatch

Lmatch: match ob { inj0−: goto Lx
0 inj1−: goto Ly

0 }
Lx

0 : drop ob; goto Lx
1 Lx

1 : drop m y; goto Lx
2 Lx

2 : return mx
Ly

0 : drop ob; goto Ly
1 Ly

1 : drop mx; goto Ly
2 Ly

2 : return m y
}

The function split_mut_list in Example C can be written in COR as follows.

fn split-mut-list⟨α |⟩(mlx: mutα List int) → own List mutα int {
mlx as mutα(∗ + Cons int);
match mlx {

inj0−: drop mlx;
let ou � (); let olmx � inj∗+Cons mutα int

0 ou; olmx as own List mutα int;
return olmx

inj1mcx:
let (mx ,molx′) � mcx; let omx � ref mx;
let mlx′

� deref molx′; let olmx′
� split-mut-list⟨α⟩(mlx′);

let oolmx′
� ref olmx′; let ocmx � (omx , oolmx′);

let olmx � inj∗+Cons mutα int
1 ocmx; olmx as own List mutα int;

return olmx
}

}

3.1.3 Type Checking

Contexts

The following five types of contexts are used to describe type-checking rules
of COR.

The function signature context Σ of a program P � F1 · · · Fn is the mapping
that maps the function name of Fi to the function signature of Fi . It is used for
type checking on function call instruction let y � f ⟨ψ1 , . . . , ψm⟩(x1 , . . . , xn).

24



The lifetime parameter context Ψex of a function f ⟨α1 , . . . , αm | · · ·⟩(· · ·){· · ·} is
the finite set of the lifetime parameters {α1 , . . . , αm}. It is used to distinguish local
lifetime variables from lifetime parameters for type checking on lifetime-related
instructions intro α and now α.12

A lifetime context Ψ is a finite preordered set of lifetime variables (Ψ, R)
(whereΨ is the underlying set and R the preorder relation onΨ). It represents
the set of lifetime variables (local lifetime variables and lifetime parameters) with
constraints on them provided at each program point (or label).

A variable context Γ is a finite set of elements of form x: A T (x is active and
has type A T) and of form x:ψ A T (x is shadowed until ψ and has type A T),
satisfying the condition that all variable names in Γ are mutually distinct. A
variable context represents the set of active and shadowed variables with their
types given at each program point (or label).

A label context L of a function F � fn f Σ {L1: S1 · · · Ln : Sn} is a mapping
that maps each label Li to a pair (Ψi , Γi) of a lifetime context Ψi and a variable
context Γi , satisfying the following condition: every lifetime variable appearing
in Γi should be contained in Ψi .

Subtyping Relation and Preorder on Authorities

To begin with, both the subtyping relation and the preorder on authorities
are later defined using the preorder on lifetimes ψ ≤Ψ φ under lifetime context
Ψ � (Ψ, R) defined by the following rules.

(α, β) ∈ R
α ≤Ψ β

ψ ≤Ψ φi (i � 1, . . . , n)
ψ ≤Ψ φ1 ∧ · · · ∧ φn

ψi ≤Ψ φ

ψ1 ∧ · · · ∧ ψn ≤Ψ φ

Type reinterpretation instruction x as A T is used for folding/unfolding re-
cursive types and modifying lifetime bounds for reference types. Checking type
reinterpretation involves the subtyping relation T ≤Ψ T′ under lifetime context Ψ
defined by the following rules. T ∼Ψ T′ is used to indicate that both T ≤Ψ T′

and T ≥Ψ T′ hold.

T ≤Ψ T
T1 ≤Ψ T2 T2 ≤Ψ T3

T1 ≤Ψ T3

T ≤Ψ T′

own T ≤Ψ own T′
T ≤Ψ T′

immutψ T ≤Ψ immutψ T′

T ∼Ψ T′

mutψ T ∼Ψ mutψ T′
ψ ≥Ψ φ

Bψ T ≤Ψ Bφ T

Ti ≤Ψ T′
i (i � 1, . . . , n)∑n

i�1 Ti ≤Ψ
∑n

i�1 T′
i

Ti ≤Ψ T′
i (i � 1, . . . , n)∏n

i�1 Ti ≤Ψ
∏n

i�1 T′
i

T ≤Ψ T′

µX.T ≤Ψ µX.T′ µX.T ∼Ψ µY.T[Y/X] µX.T ∼Ψ T[µX.T/X]

Subtyping rules on recursive types are quite restrained; for example, property
µX. int + own X ∼Ψ µX. int + own (int + own X) (or more generally, µX.T ∼Ψ
µX.T[T/X]) cannot be derived from the rules above, but it can safely be admit-
ted. In order to exert subtyping thoroughly, there are some remedies such as
semantically regarding recursive types as regular (possibly infinite) trees; for our
purpose, nevertheless, the presented subtyping rules are satisfactory.

12λRust introduces a lifetime for each function (indicated by an archaic Greek letter digamma) to
ensure that lifetime parameters live longer than local lifetime variables.

25



The preorder on pointer authorities A ≤Ψ A′ under lifetime context Ψ is de-
fined by the following rules. This is used to describe type checking on mutable
(re)borrowing instruction let y � mut bor x till ψ.

A ≤Ψ own immutψ ≤Ψ mutφ
ψ ≤Ψ φ

Bψ ≤Ψ Bφ

In this context, we also define A ∧ A′ by the following rules. It works as the
minimum of pointer authorities with respect to preorder ≤Ψ under any lifetime
context Ψ, and is used for description of type checking on dereference instruction
let y � deref x.

A ∧ own � own ∧ A � A immutψ ∧mutφ � mutφ ∧ immutψ � immutψ
Bψ ∧ Bφ � Bψ∧φ

Copyability

Type copyability T: copy (more precisely, copyability of data of type T) is
defined by the following rules. It corresponds to Rust’s Copy trait. In short, types
containing owning pointers or mutable references out of the guard of immutable
references are not copyable. This is used to describe type checking on copy
instruction let y � copy x.

int: copy immutψ T: copy
Ti : copy (i � 1, . . . , n)∑n

i�1 Ti : copy
Ti : copy (i � 1, . . . , n)∏n

i�1 Ti : copy
T: copy

µX.T: copy

Note that the copyability checking rule for recursive types of form µX.T is
legitimate, since each appearance of X is guarded under some pointer type;
while µX. int+immutψ X is copyable, µX. int+own X is not (it requires recursive
copying for replication).

Type Checking on Instructions

The relation Σ;Ψex; Ψ, Γ ⊢ I; Ψ′, Γ′ (given lifetime context Ψ and variable
context Γ, instruction I yields lifetime context Ψ′ and variable context Γ′, under
function signature context Σ and lifetime parameter context Ψex) is defined by
the following rules.13 14 Σ andΨex are omitted when not relevant.

Ψ, Γ ⊢ let x � n; Ψ, Γ + {x: own int}
x: A int, x′: A′ int ∈ Γ

Ψ, Γ ⊢ let y � x o x′; Ψ, Γ + {y: own int}
x: A int, x′: A′ int ∈ Γ

Ψ, Γ ⊢ let y � x r x′; Ψ, Γ + {y: own bool}
Ψ, Γ + {x: A T} ⊢ let y � x; Ψ, Γ + {y: A T}

T: copy x: A T ∈ Γ
Ψ, Γ ⊢ let y � copy x; Ψ, Γ + {y: own T}

13<Ψ means that ≤Ψ holds but ≥Ψ does not.
14For sets A and B, A + B is a union A ∪ B that is defined just if A ∩ B , � holds, and A − B

is a set difference A \ B that is defined just if A ⊇ B holds; note that A + B � C is equivalent to
A � C − B for sets A, B, C. For a binary relation R, R+ stands for its transitive closure.

26



x: immutψ T ∈ Γ
Ψ, Γ ⊢ let y � repl x; Ψ, Γ + {y: immutψ T}

mutψ <Ψ A

Ψ, Γ + {x: A T} ⊢ let y � mut bor x till ψ; Ψ, Γ + {x:ψ A T, y: mutψ T}
Ψ, Γ + {x: A T} ⊢ let y � ref x; Ψ, Γ + {y: own A T}

Ψ, Γ + {x: A A′ T} ⊢ let y � deref x; Ψ, Γ + {y: A′′ T} where A′′
� A ∧ A′

Ψ, Γ + {x: own Ti} ⊢ let y � inj
∑n

j�1 T j

i x; Ψ, Γ + {y: own
∑n

j�1 T j}

Ψ, Γ + {xi : own Ti | i � 1, . . . , n} ⊢ let y � (x1 , . . . , xn); Ψ, Γ + {y: own
∏n

i�1 Ti}
Ψ, Γ + {x: own

∏n
i�1 Ti} ⊢ let (y1 , . . . , yn) � x; Ψ, Γ + {yi : own Ti | i � 1, . . . , n}

Σ( f ) � ⟨α1 , . . . , αm | αa1 ≤ αb1 , . . . , αam′ ≤ αbm′ ⟩
(z1: A1 T1 , . . . , zn : An Tn) → A′ T′ ψak ≤Ψ ψbk (k � 1, . . . ,m′)

Σ; Ψ, Γ + {xi : Ai Ti | i � 1, . . . , n}
⊢ let y � f ⟨ψ1 , . . . , ψm⟩(x1 , . . . , xn); Ψ, Γ + {y: A′ T′}

x: mutψ T, x′: A T ∈ Γ A is own or has form mutψ′

Ψ, Γ ⊢ swap(x , x′); Ψ, Γ
if A is own, then T does not contain own and mut

Ψ, Γ + {x: A T} ⊢ drop x; Ψ, Γ

Ψ, Γ + {x: mutψ T} ⊢ immut x; Ψ, Γ + {x: immutψ T}
A T ≤Ψ A′ T′

Ψ, Γ + {x: A T} ⊢ x as A′ T′; Ψ, Γ + {x: A′ T′}
Ψex; (Ψ, R), Γ ⊢ intro α;

(
Ψ + {α},

(
R + {α} × ({α} +Ψ)

) )
, Γ

α < Ψex α is the smallest on R types in Γ do not contain α
Ψex; (Ψ + α, R), Γ ⊢ now α;

(
Ψ, R ∩ (Ψ ×Ψ)

)
, Γ∗

where Γ†
� {x:ψ A T | ψ contains α}

and Γ∗ � Γ − Γ†
+ {x: A T | x:ψ A T ∈ Γ†}

Type checking for drop. The awkward precondition “if A is own, then T does not
contain own and mut” in a rule for drop can be eliminated, but it is imposed here
for the sake of simplicity of operational semantics and translation to CHCs; the
rule “if A is own, then T does not contain own” simplifies operational semantics,
and the rule “if A is own, then T does not contain mut” simplifies translation to
CHCs.

Type checking for lifetime elimination. When local lifetime variable α is elim-
inated by instruction now α, there should not remain any variable, active or
shadowed, that contains α in the type; it is guaranteed in type checking on
programs by the restriction on label contexts.

Type Checking on Statements

The relation Σ;Ψex; Ψ, Γ; L,A′ T′ ⊢ S (given lifetime context Ψ and variable
context Γ, statement S jumps to labels typed by L or returns a value of type
A′ T′, under function signature context Σ and lifetime parameter contextΨex) is

27



defined by the following rules.

L(L) � (Ψ′, Γ′) Σ;Ψex; Ψ, Γ ⊢ I; Ψ′, Γ′

Σ;Ψex; Ψ, Γ; L,A′ T′ ⊢ I; goto L

Σ;Ψex; (Ψex , R), {x: A′ T′}; L,A′ T′ ⊢ return x

x: A
∑n

j�1 T j ∈ Γ

L(Li) �
{
(Ψ, Γ) ( ỹi � −)(
Ψ, Γ − {x: A

∑n
j�1 T j} + {yi : A Ti}

)
( ỹi � yi) (i � 1, . . . , n)

Σ;Ψex; Ψ, Γ; L,A′ T′ ⊢ match x {inj1 ỹ1: goto L1; . . . ; injn ỹn : goto Ln}
Type checking for return. When escaping from a function with return x,

there should not remain any local lifetime variable, and any variable but x.
In particular, there remains no shadowed variable; thus, (re)borrowing starts and
ends within a function, which means that for mutable (re)borrowing instruction
let y � mut bor x till ψ, lifetime ψ should be equivalent to some local lifetime
variable.

Type Checking on Functions and Programs

The relation Σ; L ⊢ F (function F is well-typed by label context L under
function signature context Σ) is defined by the following rule.15

Σ;Ψex; Ψ, Γ; L,A′ T′ ⊢ Si where (Ψ, Γ) � L(Li) (i � 1, . . . , l)
L(entry) �

(
(Ψex , Rex), {x1: A1 T1 , . . . , xn : An Tn}

)
Σ; L ⊢ fn f ⟨α1 , . . . , αm | αa1 ≤ αb1 , . . . , αam′ ≤ αbm′ ⟩

(x1: A1 T1 , . . . , xn : An Tn){L1: S1 · · · Ll : Sl}
whereΨex � {α1 , . . . , αm} and Rex �

(
IdΨex ∪ {(αa j , αb j ) | j � 1, . . . ,m′}

)+
For program P � F1 · · · Fn , the relation (L f ) f ⊢ P (program P is well-typed by

an indexed family of label contexts (L f ) f indexed by function names) is defined
as the condition ∀i ∈ {1, . . . , n}. Σ; L fi ⊢ Fi , where fi is the name of Fi for each i,
and Σ is the function signature context of P.

3.1.4 Operational Semantics

State Model: Stack and Heap

Mimicking the typical behavior of hardware, the state of execution is de-
scribed by the state of a call stack (represented as a stack S) and the state of heap
memory (represented as a heap H) in our operational semantics.

A (stack) frame F is a mapping that maps a variable name x to an address
(natural number) a or an invalid value ⊥, satisfying the condition that only
a finite number of variable names x are mapped to a valid address; a frame
represents the addresses of the (active or shadowed) variables in each function
call.

A stack S has form [ f0 , L0]F0; S̃, where a pre-stack S̃ has form [ f1 , L1] ⟨ψ1
1 , . . . ,

ψ1
m1⟩ x1 , F1; . . . ; [ fn , Ln] ⟨ψn

1 , . . . , ψ
n
mn

⟩ xn , Fn ; (n ≥ 0). A stack consists of accu-
mulated layers of frames with additional information. The square-bracketed
part [ fi , Li] indicates the program point with function name fi and label Li . The
angle-bracketed part ⟨ψi

1 , . . . , ψ
i
mi
⟩ indicates lifetime arguments passed to the

function of the frame just above (it is not used in operational semantics but is

15IdΨex is the identity relation on setΨex.

28



added for the sake of discussion on the safety invariant). The following part
xi , Fi means that the return value will be stored at xi when the function of the
frame just above returns.

A heap H is a mapping that maps an address (natural number) a to a integer
n or an invalid value ⊥, satisfying a condition that only a finite number of
addresses a are mapped to a valid integer. Thus conceptually, the memory cell of
each address accommodates one integer value.

xF stands for the address stored for variable x in frame F, and ∗Ha stands
for the value stored at address a in heap H. The frame F with the value at
index xi modified into ai for each i � 1, . . . , n is written as F{x1 ◁ a1; . . . ; xn ◁ an}
(indices x1 , . . . , xn should be mutually distinct); we also use a similar notation
for heaps. Moreover, we introduce a number of useful notations. a ◁n v stands
for a set of writes a ◁ v; a + 1 ◁ v; . . . ; a + n − 1 ◁ v, and a ◀H

n b for a set of writes
a ◁ H[b]; a + 1 ◁ H[b + 1]; . . . ; a + n − 1 ◁ H[b + n − 1]. newH(n , a) means that
H[a] � H[a + 1] � · · · � H[a + n − 1] � ⊥ holds.

Type Size

Type size #T is recursively defined as follows; the type size of T represents
how many memory cells are needed to store data of type T. The sizes for type
variables are undefined; the size for any complete type (a type not used as a
substructure of a larger type) is nevertheless defined since any type variable in
the type is guarded under a pointer type.

# int :� 1 # A T :� 1 #µX.T :� #T

#
∑n

i�1 Ti :� 1 + max{#T1 , . . . , #Tn} #
∏n

i�1 Ti :� #T1 + · · · + #Tn

Typed Instructions and Statements

In order to describe operational semantics, information on type sizes of vari-
ables is widely required (in addition, pointer authorities are relevant for derefer-
ence instruction let y � deref x and drop instruction drop x). For that purpose,
we introduce typed instructions and statements. Typed instructions and statements
are also used for description of translation to CHCs, because mutable references
and other pointers (owning pointers or immutable references) should be differ-
ently treated.

The syntax of typed instruction Î can be obtained by replacing x with x: A T;
we often omit : A T when type information is not relevant. In addition, the
symbol Î† indicates any typed instruction but function call instruction let y �

f ⟨· · ·⟩(x1 , . . . , xn).
The syntax of typed statement Ŝ can be obtained by replacing I with Î, x with x:

A T, and x̃ with x̃: A T; we often omit : A T when type information is not relevant.
We can obtain a typed statement by giving type information to a statement S
with a variable context Γ; we call it the type modification of S with Γ and write it
as TM(S |Γ). Although it can be described with natural rules, we do not give the
precise definition in the paper since it is a little cumbersome.

29



Operational Semantics on Instructions

The relation F/H ⊢ Î†; F′/H′ (given frame F with heap H, typed instruction
I† yields frame F′ with heap H′) is defined by the following rules.

newH(1, a)
F/H ⊢ let x � n; F{x ◁ a}/H{a ◁ n}

newH(1, a)
F/H ⊢ let y � x o x′; F{x , x′ ◁⊥; y ◁ a}/H{a ◁ ∗HxF o ∗Hx′

F}
newH(1, a)

F/H ⊢ let y � x r x′; F{x , x′ ◁⊥; y ◁ a}/H{a ◁ ∗HxF r ∗Hx′
F}

F/H ⊢ let y � x; F{x ◁⊥; y ◁ xF}/H

newH(#T, a)
F/H ⊢ let y: own T � copy x; F{y ◁ a}/H{a ◀H

#T xF}

F/H ⊢ let y � repl x; F{y ◁ xF}/H

F/H ⊢ let y � mut bor x till ψ; F{y ◁ xF}/H

newH(1, a)
F/H ⊢ let y � ref x till ψ; F{x ◁⊥; y ◁ a}/H{a ◁ xF}

F/H ⊢ let y � deref (x: own A T) till ψ; F{x ◁⊥; y ◁ ∗HxF}/H{xF ◁⊥}
F/H ⊢ let y � deref (x: Bφ A T) till ψ; F{x ◁⊥; y ◁ ∗HxF}/H

newH(#T, a)
F/H ⊢ let y � injT

i (x: own T′);
F{x ◁⊥; y ◁ a}/H{a ◁ i; a + 1 ◀H

#T′ xF; a + 1 + #T′ ◁#T−#T′−1 0}
newH(#T, a)

F/H ⊢ let y: own T � (x1: own T1 , . . . , xn : own Tn);
F{x1 , . . . , xn ◁⊥; y ◁ a}
/ H{xiF ◁#Ti ⊥ (i � 1, . . . , n); a +

∑i−1
j�1 #T j ◀H

#Ti
xiF (i � 1, . . . , n)}

F/H ⊢ swap(x: A T, y); F/H{xF ◀H
#T yF; yF ◀H

#T xF}
F/H ⊢ drop (x: own T); F{x ◁⊥}/H{xF ◁#T ⊥}

F/H ⊢ drop (x: Bψ T); F{x ◁⊥}/H

Î† � immut x , x as A T, intro α, now α

F/H ⊢ Î†; F/H
Operational semantics on injection instruction. For injection instruction let y �

inj
∑n

j�1 T j

i x, zeros are padded when 1+ #Ti is smaller than #
∑n

j�1 T j (that is, #Ti is
smaller than max j #T j).

Operational Semantics on Statements

The relation S/H ⊢ Ŝ;
{S′

a

}
/H′ (given a stack S with a heap H, typed statement

Ŝ yields a new stack S′ or an address a with a new heap H′) is defined by the

30



following rules.16

F/H ⊢ Î†; F′/H′

[ f , L]F; S̃/H ⊢ Î†; goto L′; [ f , L′]F′; S̃/H′

[ f ′, L]F; S̃/H ⊢ let y � f ⟨ψ1 , . . . , ψm⟩(x1 , . . . , xn); goto L′;
[ f , entry] ⊥{xi ◁ xiF (i � 1, . . . , n)};
[ f ′, L′] ⟨ψ1 , . . . , ψm⟩ y , F{xi ◁⊥ (i � 1, . . . , n)}; S̃/H

[ f , L]F; [ f ′, L′] ⟨· · ·⟩ y , F′; S̃/H ⊢ return x; [ f ′, L′]F′{y ◁ xF}; S̃/H

[ f , L]F; /H ⊢ return x; xF/H

∗HxF � i
[ f , L]F; S̃/H ⊢ match x {· · ·; inji−: goto L′; · · ·}; [ f , L′]F; S̃/H

∗HxF � i
[ f , L]F; S̃/H ⊢ match (x: Bψ T) {· · ·; inji y: goto L′; · · ·};

[ f , L′]F{y ◁ xF + 1}; S̃/H

∗HxF � i
[ f , L]F; S̃/H ⊢ match (x: own T) {· · ·; inji y: goto L′; · · ·};

[ f , L′]F{y ◁ xF + 1}; S̃/H{xF ◁⊥}

Operational Semantics on Programs

The relation P: (L f ) f ⊢ S/H →
{S′

a

}
/H′ (under program P typed by (L f ) f , a

stack S with a heap H changes by one step into a new stack S′ or an address a

with a new heap H′) is defined by the following rule. Typed statement Ŝ
P:(L f ) f

f0 ,L
represents the type modification TM(S |Γ), where S is the statement labeled L in
function f0 in program P, and Γ is the variable context part of L f0(L).

S � [ f0 , L]F; S̃ S/H ⊢ Ŝ
P:(L f ) f

f0 ,L
;
{S′

a

}
/H′

P: (L f ) f ⊢ S/H →
{S′

a

}
/H′

Finally, the relation P: (L f ) f ⊢ S/H ↠ a/H′ (under program P typed by (L f ) f ,
a stack S with a heap H changes by one or more steps into an address a with a
new heap H′) is defined by the following rules.

P: (L f ) f ⊢ S/H → a/H′

P: (L f ) f ⊢ S/H↠ a/H′
P: (L f ) f ⊢ S/H → S′/H′ P: (L f ) f ⊢ S′/H′↠ a/H′′

P: (L f ) f ⊢ S/H↠ a/H′′

3.2 Translation of COR Programs into Sets of CHCs

We formally describe our translation, setting COR as the source language;
CHCs are defined within multi-sorted first-order predicate logic introduced here.

3.2.1 Multi-sorted First-order Predicate Logic

Syntax

X,Y ::� (sort variable)

16The empty frame (the frame that maps every variable x to ⊥) is written as ⊥.

31



(sort) S ::� X | int (integer) | box S (box) | mut S (mutable reference)

| µX.S (recursive sort) | +(S1 , . . . , Sn) (sum) | ×(S1 , . . . , Sn) (product)

x , y , a , b , r ::� ((data) variable)

(term) t ::� x | x: S (variable with a sort annotation) | n (integer)

| t o t′ (binary operation on integers)

| t r t′ (binary relation on integers)

| ⟨t⟩ (box) | ⟨t , t′⟩ (mutable reference)

| injS
i t (tagged value) | (t1 , . . . , tn) (tuple)

(basic formula) φ ::� t � t′ (equality)

| φ ∧ φ′ (conjunction) | φ ∨ φ′ (disjunction)

| φ ⇒ φ′ (implication) | ¬φ (negation)

f ::� (uninterpreted predicate)

(extended formula) φ̂ ::� φ | f (t1 , . . . , tn)
(CHC) H ::� φ̂0 ⇐� φ̂1 ∧ · · · ∧ φ̂n

For a complete sort (a sort not used as a substructure of a larger sort), every
appearance of sort variables in sorts should be bound by µ.

In a CHC, all variables are bound with universal quantification. Sort anno-
tations are added to some variables so that sorts of variables are unambiguous
(up to equivalence) within a CHC.

Just like COR, ∗ is a shorthand for ×() and bool for ∗ + ∗.

Sort Checking

Sort equivalence S ∼ S′ is defined by the following rules.

S ∼ S
S ∼ S′

S′ ∼ S
S1 ∼ S2 ∧ S2 ∼ S3

S1 ∼ S3

S ∼ S′

box S ∼ box S′
S ∼ S′

mut S ∼ mut S′
Si ∼ S′

i (i � 1, . . . , n)∑n
i�1 Si ∼

∑n
i�1 S′

i

Si ∼ S′
i (i � 1, . . . , n)∏n

i�1 Si ∼
∏n

i�1 S′
i

S ∼ S′

µX.S ∼ µX.S′ µX.S ∼ µY.S[Y/X] µX.S ∼ S[µX.S/X]

Sort checking t: S is defined by the following rules. Equivalent sorts behave
similarly on sort checking.

n: int t , t′: int
t o t′: int

t , t′: int
t r t′: bool

t: S
⟨t⟩: box S

t , t′: S
⟨t , t′⟩: mut S

t: Si

inj
∑n

j�1 S j

i t:
∑n

j�1 S j

ti : Si (i � 1, . . . , n)
(t1 , . . . , tn):

∏n
i�1 Si

injS
i t: S ∧ S ∼ S′

injS′
i t: S

t: S ∧ S ∼ S′

t: S′

3.2.2 Translation

Interpretation of Types

The interpretation [[T]] of type T as a sort is defined by the following rules.
A† indicates a pointer authority that is not one for mutable references (one
for owning pointers or immutable references); this notation is used repeatedly

32



hereinafter.

[[X]] :� X [[int]] :� int [[A† T]] :� box [[T]] [[mutψ T]] :� mut [[T]]
[[µX.T]] :� µX.[[T]] [[∑n

i�1 Ti]] :�
∑n

i�1[[Ti]] [[∏n
i�1 Ti]] :�

∏n
i�1[[Ti]]

Interpretation of Typed Instructions

The interpretation [[Î]](φ̂) of typed instruction Î under extended formula φ̂
(representing the constraint of the succeeding label) as a conjunction of extended
formulae is defined as follows.17 For binary operation and relation instructions,
valA(a , x) stands for a formula ⟨a , a∗⟩ � x for some fresh a∗ if A � mutψ, and
⟨a⟩ � x otherwise.

[[let x � n]](φ̂) :� x � n ∧ φ̂

[[let y � (x: A int) o (x′: A′ int)]](φ̂) :� valA(a , x) ∧ valA′(a′, x′)
∧ y � ⟨a o a′⟩ ∧ φ̂

[[let y � (x: A int) r (x′: A′ int)]](φ̂) :� valA(a , x) ∧ valA′(a′, x′)
∧ y � ⟨a r a′⟩ ∧ φ̂

[[let y � x]](φ̂) � [[let y � copy x]](φ̂) � [[let y � repl x]](φ̂) :� y � x ∧ φ̂

[[let y � mut bor (x: own T) till ψ]](φ̂) :� ⟨a⟩ � x ∧ y � ⟨a , a∗⟩
∧ xnew � ⟨a∗⟩ ∧ φ̂[xnew/x]

[[let y � mut bor (x: mutφ T) till ψ]](φ̂) :� ⟨a , a∗∗⟩ � x ∧ y � ⟨a , a∗⟩
∧ xnew � ⟨a∗ , a∗∗⟩ ∧ φ̂[xnew/x]

[[let y � ref x]](φ̂) :� y � ⟨x⟩ ∧ φ̂

[[let y � deref (x: own A T)]](φ̂) :� ⟨y⟩ � x ∧ φ̂

[[let y � deref (x: mutψ own T)]](φ̂) :� ⟨⟨a⟩, ⟨a∗⟩⟩ � x ∧ y � ⟨a , a∗⟩ ∧ φ̂

[[let y � deref (x: mutψ mutφ T)]](φ̂) :� ⟨⟨a , a†⟩, ⟨a∗ , a†∗ ⟩⟩ � x
∧ a†∗ � a† ∧ y � ⟨a , a∗⟩ ∧ φ̂

[[let y � deref (x: mutψ immutφ T)]](φ̂) :� ⟨⟨a⟩, ⟨a∗⟩⟩ � x
∧ ⟨a∗⟩ � ⟨a⟩ ∧ y � ⟨a⟩ ∧ φ̂

[[let y � deref (x: immutψ A† T)]](φ̂) :� ⟨⟨a⟩⟩ � x ∧ y � ⟨a⟩ ∧ φ̂

[[let y � deref (x: immutψ mutφ T)]](φ̂) :� ⟨⟨a , a∗⟩⟩ � x ∧ y � ⟨a⟩ ∧ φ̂

[[let y � injT
i x]](φ̂) :� ⟨a⟩ � x ∧ y � ⟨inj[[T]]i a⟩ ∧ φ̂

[[let y � (x1 , . . . , xn)]](φ̂) :� ⟨a1⟩ � x1 ∧ · · · ∧ ⟨an⟩ � xn

∧ y � ⟨(a1 , . . . , an)⟩ ∧ φ̂

[[let (y1 , . . . , yn) � x: A† T]](φ̂) :� ⟨(a1 , . . . , an)⟩ � x
∧ y1 � ⟨a1⟩ ∧ · · · ∧ yn � ⟨an⟩ ∧ φ̂

[[let (y1 , . . . , yn) � x: mutψ T]](φ̂) :� ⟨(a1 , . . . , an), (a1∗ , . . . , an∗)⟩ � x
∧ y1 � ⟨a1 , a1∗⟩ ∧ · · · ∧ yn � ⟨an , an∗⟩
∧ φ̂

[[let y � f ⟨· · ·⟩(x1 , . . . , xn)]](φ̂) :� fentry(x1 , . . . , xn , y) ∧ φ̂

17Variables not appearing in Î (such as a and xnew) are supposed to be fresh with respect to φ̂.

33



[[swap(x , y: own T)]](φ̂) :� ⟨a , a∗⟩ � x ∧ ⟨b⟩ � y
∧ xnew � ⟨b , a∗⟩ ∧ ynew � ⟨a⟩
∧ φ̂[xnew/x , ynew/y]

[[swap(x , y: mutψ T)]](φ̂) :� ⟨a , a∗⟩ � x ∧ ⟨b , b∗⟩ � y
∧ xnew � ⟨b , a∗⟩ ∧ ynew � ⟨a , b∗⟩
∧ φ̂[xnew/x , ynew/y]

[[drop (x: A† T)]](φ̂) :� φ̂

[[drop (x: mutψ T)]](φ̂) :� ⟨a , a∗⟩ � x ∧ a∗ � a ∧ φ̂

[[immut x]](φ̂) :� ⟨a , a∗⟩ � x ∧ a∗ � a ∧ xnew � ⟨a⟩ ∧ φ̂[xnew/x]
[[x as A T]](φ̂) � [[intro α]](φ̂) � [[now α]](φ̂) :� φ̂

Interpretation of Typed Statements

The interpretation [[Ŝ]]L0 ,(φ̂L)L of typed statement Ŝ as a set of CHCs under a
current label L0 and an family of extended formulae (φ̂L)L indexed by labels is
defined as follows.18

[[Î; goto L1]]L0 ,(φ̂L)L :� { φ̂L0 ⇐� [[Î]](φ̂L1) }

[[return x]]L0 ,(φ̂L)L :� { φ̂L0 ⇐� r � x }

[[match (x: A† T) {inj1 ỹ1: goto L1; . . . injn ỹn : goto Ln}]]L0 ,(φ̂L)L
:�

{
φ̂L0 ⇐� ⟨inj[[T]]i a⟩ � x ∧ yi � ⟨a⟩ ∧ φ̂Li

�� i � 1, . . . , n s.t. ỹi � yi
}

∪
{
φ̂L0 ⇐� ⟨inj[[T]]i a⟩ � x ∧ φ̂Li

�� i � 1, . . . , n s.t. ỹi � −
}

[[match (x: mutψ T) {inj1 ỹ1: goto L1; . . . injn ỹn : goto Ln}]]L0 ,(φ̂L)L
:�

{
φ̂L0 ⇐� ⟨inj[[T]]i a , b∗⟩ � x ∧ yi � ⟨a , a∗⟩ ∧ b∗ � inj[[T]]i a∗ ∧ φ̂Li�� i � 1, . . . , n s.t. ỹi � yi

}
∪

{
φ̂L0 ⇐� ⟨inj[[T]]i a , b∗⟩ � x ∧ φ̂Li

�� i � 1, . . . , n s.t. ỹi � −
}

Interpretation of Functions and Programs

The interpretation [[Γ]] f ,L of variable context Γ under function name f and label
L as an extended formula is defined as fL(x1: [[A1 T1]], . . . , xn : [[An Tn]], r), where
the variable-type pairs of the elements of Γ are enumerated as (x1 ,A1 T1), . . . , (xn ,
An Tn) using the (appropriately defined) lexicographic order on variable names.

The interpretation [[F: L]] of function F � fn f Σ {L1: S1 · · · Ln : Sn} typed by
label context L as a set of CHCs is defined as

∪n
i�1[[Ŝi]]Li ,([[ΓL]] f ,L)L , where ΓL is the

variable context part of L(L), and typed statement Ŝi is statement Si typed with
ΓLi .

Finally, we achieve the translation; the interpretation [[P: (L f ) f ]] of program
P � F1 · · · Fn typed by (L f ) f as a set of CHCs is defined as

∪n
i�1[[Fi : L fi ]], where

fi is the function name of Fi for each i.

Further Simplification of CHCs

Allocating an uninterpreted predicate for each label usually results in too
many uninterpreted predicates appearing in the output CHCs. Through unfold-

18In the rule for return x, variable r should be fresh with respect to φ̂L0 .

34



ing on the set of CHCs, however, the number of uninterpreted predicates will
usually be greatly reduced.

3.3 Conjecture on the Correctness of the Translation

In this section, we give a conjecture on the correctness of the translation. We
first introduce the safety invariant on a stack and a heap (with some additional
information on types), which is preserved through computation. Then each
program point, or label, of a function is given the natural model, which is defined
in terms of computation from any stack and heap satisfying the safety invariant.
Finally, we give a conjecture that the model is identical to the least fixed point
specified by the CHCs that our translation generates.

3.3.1 Safety Invariant and the Preservation Lemma

Typed Stack

In order to manage the ownership information with regard to stacks, we define
typed stacks here. The notable point is how to deal with lifetime variables; each
function call can use lifetime parameters, which are embodied by local lifetime
variables introduced in outer function calls. Thus on the creation of a typed stack,
we give discriminating indices (e.g. α[i] instead of α) to local lifetime variables
of each function call, thereby get the global lifetime context of all local lifetime
variables (and lifetime parameters of the base frame) in the stack, and embody all
lifetime parameters (except those of the base frame) as local lifetime parameters.

A typed frame F̂ is a mapping that maps each variable name x to an invalid
value ⊥ or an item of form a: A T (address a with active type A T) or a:ψ A T
(address a with type A T shadowed until ψ), satisfying the condition that only a
finite number of variable names x are not mapped to an invalid value.

A typed stack Ŝ/Ψ consists of a body Ŝ and a global lifetime context Ψ∗ (a finite set
of lifetime variables); the body Ŝ has form [ f0 , L0] F̂0; [ f1 , L1] x1 , F̂1; . . . ; [ fn , Ln]
xn , F̂n ;.

The type modification TM(F | Γ, y) of a frame F with a variable context Γ∗ (which
has undergone substitution on lifetime variables) is a typed frame defined as
follows, under the restriction that the set of variables x such that xF , ⊥ holds is
equal to the set of variables x that appears in Γ∗ and is not y.

xTM(F | Γ,y) :�

⊥ (xF � ⊥)
xF: A T (x: A T ∈ Γ)
xF:ψ A T (x:ψ A T ∈ Γ)

The type modification TM(S | Σ, (L f ) f )of a stack S with a function signature context
Σ and an indexed family of label contexts (L f ) f is a typed stack defined as
follows. To sum up, each typed frame F̂i is obtained from the frame Fi with type
modification by the variable context Γi under substitution on lifetime variables,
and the global lifetime context Ψ∗

n is obtained by iteratively swelling a lifetime
context from the base frame. θ or [ψ1/α1 , . . . , ψk/αk] stands for a substitution
on lifetime variables; θθ′ stands for a composition of substitutions; ψθ and Γθ
stand for a result of a substitution.

TM
(
[ fn , Ln]Fn ; [ fn−1 , Ln−1] ⟨ψn−1

1 , . . . , ψn−1
mn−1⟩ xn−1 , Fn−1;

. . . ; [ f0 , L0] ⟨ψ0
1 , . . . , ψ

0
m0⟩ x0 , F0;

�� Σ, (L f ) f
)

:� [ fn , Ln] F̂n ; [ fn−1 , Ln−1] xn−1 , F̂n−1; . . . ; [ f0 , L0] x0 , F̂0; /Ψ∗
n

35



where L fi (Li) � ((Ψi , Ri), Γi), Σ( fi) � fi ⟨αi ,ex
1 , . . . , αi ,ex

mi | · · ·⟩(· · ·)

and Ψi
ex :� {αi ,ex

1 , . . . , αi ,ex
mi }

(Ψ†
i , R

†
i ) :�

(
(Ψi −Ψi

ex)[i] ,
(
Ri ∩ (Ψi −Ψi

ex) × (Ψi −Ψi
ex)

) [i])
Ψ∗

0 � (Ψ∗
0 , R

∗
0) :� (Ψ[0]

0 , R[0]
0 )

where {α1 , . . . , αk}[i] :� α[i]1 , . . . , α
[i]
k

{(α1 , β1), . . . , (αk , βk)}[i] :� {(α[i]1 , β
[i]
1 ), . . . , (α[i]k , β

[i]
k )}

Ψ∗
i+1 � (Ψ∗

i+1 , R
∗
i+1) :� (Ψ∗

i +Ψ
†
i+1 , R∗

i + R†
i+1 + R†

i+1 × R∗
i )

θin
0 � θ0 :� [α[0]1 /α1 , . . . , α

[0]
k /αk] whereΨ∗

0 � {α[0]1 , . . . , α[0]k }
θin

i+1 :� θin
i [α[i]1 /α1 , . . . , α

[i]
k /αk] whereΨ†

i � {α[i]1 , . . . , α
[i]
k }

θi+1 :� θin
i+1[ψi

1θi/αi ,ex
1 , . . . , ψi

mi
θi/αi ,ex

mi ]
F̂i :� TM(Fi | Γiθi , xi )

We refine relation P: (L f ) f ⊢ S/H →
{S′

a

}
/H′ for typed stacks P: (L f ) f ⊢

Ŝ/Ψ∗/H →
{Ŝ′/Ψ∗′

a

}
/H′.19

Ownership Footprint

In our approach, the ownership information is summarized for each address
as a multiset of (pointer) authorities possibly with shadowing information (“shad-
owed until lifetime ψ”); information such as “which variable has a control over
which address” or “which address is borrowed from which variable” is ignored
here. The summary of ownership information on all relevant addresses is here
called an ownership footprint.

The ownership footprint OFH(a: A T) of an address a with type A T under heap
H is a finite multiset of elements of form a′: A′ (address a′ is under a control of
(pointer) authority A′). It is recursively defined as follows.20 {|x1 , . . . , xn |} is an
extensional representation of a multiset. Note that the ownership footprint is
not defined for ⊥: A T (an invalid address); thus, if OFH(a: A T) is successfully
defined, then the whole data structure of a: A T can be traced without finding an
invalid address.

OFH(a: A int) :� {|a: A|} when ∗Ha , ⊥
OFH(a: A A′ T) :� {|a: A|} + OFH(∗Ha: A′′ T) where A′′

� A ∧ A′

OFH(a: A
∑n

i�1 Ti) :� {|a: A|} + OFH(a + 1: A T j)
+ {|(a + k): A | k � 1 + #T j , . . . , #

∑n
i�1 Ti − 1|}

where j � ∗Ha
and ∗H(a + k) � 0 (k � 1 + #T j , . . . , #

∑n
i�1 Ti − 1)

OFH(a: A
∏n

i�1 Ti) :�
∑n

i�1 OFH((a +
∑i−1

k�1 #Tk): A T)
OFH(a: A µX.T) :� OFH(a: A T[µX.T/X])

Using this, the ownership footprint OFH(F̂) of a typed frame F̂ under heap H is
a finite multiset of elements of form a: A (address a is under an active control
of authority A) and a:ψ A (address a is under an inactive control of authority A,

19Information on lifetime arguments is omitted in typed stacks unlike stacks, but it is not relevant
here.

20+ and
∑

indicate the sum or the disjoint union of multisets (that is, the multiset with the sum
multiplicity given to each item).

36



which will be activated at lifetime ψ), is defined as follows.

OFH(F̂) :�
∑

xF̂�a:A T

OFH(a: A T) +
∑

xF̂�a:ψA T

(
OFH(a: A T)

)ψ
where {|a1: A1 , . . . , an : An |}ψ :� {|a1:ψ A1 , . . . , an :ψ An |}

Finally, the ownership footprint OFH(Ŝ) of a body of a typed stack Ŝ under heap H
is a finite multiset of elements of form a: A and a:ψ A defined as follows.

OFH
(
[ f0 , L0] F̂0; [ f1 , L1] x1 , F̂1; . . . ; [ fn , Ln] xn , F̂n ;

)
:�

n∑
i�1

OFH(F̂i)

Safety Invariant and the Preservation Lemma

The safety invariant of a typed stack Ŝ/Ψ∗ with a heap H is the conjunction
of the following conditions: (1) the ownership footprint OFH(Ŝ) is defined, and
(2) in regard to OFH(Ŝ), (2a) for each address a, there should not be two or more
elements of form either a: own or a: mutψ; (2b) for each address a, if there is an
element of form a: immutψ, there should not be any element of form a: own or a:
mutψ′; (2c) for each address a, if there is an element of form a:ψ A, there should
not be any element of form a: own; (2d) for each address a, if there is an element
of form a:ψ own, there should not be any other element of form a:φ own; (2e) for
each address a, and for any element of form a:ψ A and any other element of form
a: Bφ or a:ψ′

Bφ satisfying ψ <Ψ∗ φ, B should be immut and A should be of form
immutφ′; and (2f) for each address a, and for any element of form a:ψ A and any
other element of form a:ψ′

A′ such that ψ ∼Ψ∗ ψ′,21 A is of form immutφ and A′

also is of form immutφ′. The properties (1), (2a) and (2b) are of main interest;
(2c), (2d), (2e) and (2f) support (2a) and (2b).

Finally, we achieve the preservation lemma of the safety invariant.

Lemma 1 For any program P typed by (L f ) f , typed stacks Ŝ, Ŝ′, and heaps H,H′ such
that P: (L f ) f ⊢ Ŝ/H → Ŝ′/H′ holds, if Ŝ with H satisfies the safety invariant, then so
does Ŝ′ with H′. ■

Proof Simply by checking rules of type checking and operational semantics
for each type of instructions and statements. The crucial point is, mutual
(re)borrowing (with instruction let y � mut bor x till ψ), lifetime elimination
(with instruction now α), alteration of mutable references into immutable refer-
ences (with instruction immut x), and replication of immutable references (with
instructions let y � copy x and let y � repl x) all preserve the safety invariant.□

3.3.2 Natural Model Built on Operational Semantics

The natural model of each program point, or label, of a function is defined
here in terms of computation from a typed stack with a heap satisfying the
safety invariant. This model may seem rather hard to understand for program
points with shadowed variables or (mutable/immutable) references, but has
a clear meaning for program points without them, which simply justifies the
model.

21∼Ψ∗ means that both ≤Ψ∗ and ≥Ψ∗ hold.

37



Traces

A finite sequence of pairs of a typed stack and a heap ((Ŝi/Ψ∗
i ,Hi))n

i�1 (n ≥ 1)
is said to be a trace T from label L of a function f in a program P typed (L f ) f ,
if (0) Ŝ1 has form [ f , L] F̂; (it has only one typed frame F̂ and there is no frame
below it), (1) typed stack Ŝ1/Ψ∗

1 with heap H1 satisfies the safety invariant, (2) P:
(L f ) f ⊢ Ŝi/Hi → Ŝi+1/Hi+1 holds for i � 1, . . . , n−1, and (3) P: (L f ) f ⊢ Ŝn/Hn →
a/Hn holds.

The elimination moment EMT (ψ) of lifetime ψ on a trace T � ((Ŝi/Ψ∗
i ,Hi))n

i�1
is the smallest i such that some of the lifetime variables appearing in ψ is not
contained in Ψ∗

i .
The completion moment CMT (a) of address a on a trace T � ((Ŝi/Ψ∗

i ,Hi))n
i�1

is an integer 1, . . . , n or infinity ∞ given as follows: from elements of form a:ψ
A in OFH1(Ŝ1), take the one with the smallest ψ with respect to Ψ∗

1, and return
EMT (ψ); if such an element does not exist, return ∞.

Translating Concepts of Operational Semantics into Logic

The exterior interpretation [[∗a: T]]ex
OF,H of the data at address a typed T under

ownership footprint OF and heap H as a term is recursively defined as follows.
The variables of form reta are for special use.

[[∗a: int]]ex
OF,H :�

{
reta (a: mutψ ∈ OF)
∗Ha (otherwise)

[[∗a: A† T]]ex
OF,H :�

{
reta (a: mutψ ∈ OF)
⟨[[∗(∗Ha): T]]⟩ (otherwise)

[[∗a: mutψ T]]ex
OF,H :�

{
reta (a: mutφ ∈ OF)
⟨[[∗(∗Ha): T]], ret∗Ha⟩ (otherwise)

[[∗a:
∑n

i�1 Ti]]ex
OF,H :�

{
reta (a: mutψ ∈ OF)
inj[[

∑n
i�1 Ti]]

∗Ha [[∗(a + 1): T∗Ha]]ex
OF,H (otherwise)

[[∗a:
∏n

i�1 Ti]]ex
OF,H :� ([[∗(a +

∑k−1
i�1 #Ti): Tk]]ex

OF,H)n
k�1

[[∗a: µX.T]]ex
OF,H :� [[∗a: T[µX.T/X]]]ex

OF,H

The interpretation [[a1 · · · a#T : T]]T of a sequence of integers a1 · · · a#T with type
T under trace T � ((Ŝi/Ψ∗

i ,Hi))n
i�1 is recursively defined as follows.

[[n: int]]T :� n

[[a: A† T]]T :� ⟨[[∗H1 a · · · ∗H1(a + #T − 1): T]]T ⟩
[[a: mutψ T]]T :� ⟨[[∗H1 a · · · ∗H1(a + #T − 1): T]]T , x∗⟩

where x∗ �

{
[[∗Hk a · · · ∗Hk (a + #T − 1): T]]((Ŝi/Ψ∗

i ,Hi))n
i�k

(CMT (a) � k)
[[∗a: T]]ex

OF(Ŝ),Hn
(CMT (a) � ∞)

[[ ja1 · · · a#T j 0 · · · 0:
∑n

i�1 Ti]]T :� inj[[
∑n

i�1 Ti]]
j [[a1 · · · a#T j : T j]]T

[[a1 · · · a∑n
i�1 #Ti :

∏n
i�1 Ti]]T :� ([[a∑ j−1

k�1 #Tk+1 · · · a∑ j
k�1 #Tk

: T j]]T )n
j�1

[[a1 · · · a#µX.T : µX.T]]T :� [[a1 · · · a#µX.T : T[µX.T/X]]]T

38



Natural Model

For each label L in function f in a program P, we define its natural model as a
predicate fL defined as follows (the number and the sorts of the arguments are
the same as the corresponding uninterpreted predicates of the CHCs).

For any variable-free terms t1 , . . . , tn , the formula fL(t1 , . . . , tn , r) is true if
and only if there exist a trace T � ((Ŝi/Ψ∗

i ,Hi))m
i�1 (from L in f ) and a substitution

θ (of variables of form reta into variable-free terms), such that ti � tTi θ holds for
each i and r � rT θ holds, where tTi and rT are defined as follows:

tTi :�

{
[[a: A T]]T (xi F̂1

� a: A T)
[[a: A T]]((Ŝi/Ψ∗

i ,Hi))m
i�EMT (ψ)

(xi F̂1
� a:ψ A T)

rT :� [[x†
F̂m
]]((Ŝm/Ψ∗

m ,Hm))

where F̂1 satisfies Ŝ1 � [ f , L] F̂1; holds and the variables mapped to a valid
address in F1 are enumerated as x1 , . . . , xn in the lexicographic order; and F̂m
satisfies Ŝm � [ f , L′] F̂m ; holds and the only variable mapped to a valid address
is x†.

3.3.3 Conjecture on the Correctness

In this subsection, we give a conjecture that the natural model built on opera-
tional semantics is identical to the least fixed point specified by the CHCs that our
translation generates; simply put, we describe the conjecture on the correctness
of our translation.

Theorem 2 For any label L in function f and any variable-free terms t1 , . . . , tn such
that fL(t1 , . . . , tn) holds in the natural model, the formula fL(t1 , . . . , tn) can also be
derived with resolution for the CHCs generated by our translation. ■

Proof By straightforward induction on the length of a trace that supports fL(t1 ,
. . . , tn) in the natural model. □

Conjecture 3 Every CHC (i.e. formula of form fL(x1 , . . . , xn , r) ⇐� · · ·) generated
by our translation is true under the natural model. ■

With this conjecture proved, the least fixed points specified by the CHCs our
translation generated will be proved to be identical to the natural model.

39



Chapter 4

Experiment and Discussion

This chapter shows the results of an experiment and discusses the verification
performance achieved with our method.

4.1 Experiment on the Verification Performances

We compared the verification performances of two versions of CHCs, sort-
carve-list (given by our translation) and sort-carve-list-a (given by a clever, non-
trivial address-based translation), taken from Example C. The latter representation
can be seen as an idealized form of the conventional, address-based method. We
verified the following properties (for address-based versions, add ‘-a’ appropri-
ately) on the Z3 engine.1

(calc-1) sort-carve-list([1], [1]).
(calc-2) sort-carve-list([3, 1], [2, 1]).
(calc-3) sort-carve-list([3, 1, 5], [2, 1, 3]).
(calc-4) sort-carve-list([7, 1, 3, 5], [4, 1, 2, 3]).
(calc-5) sort-carve-list([9, 1, 3, 5, 7], [5, 1, 2, 3, 4]).
(back) ∃lx. sort-carve-list(lx , [2, 1, 3]).
(find) ∃x , y. sort-carve-list([x , 3, 4], [y , 3, 2]).
(size) ¬

(∃x1 , x2 , x3 , x4 , y1 , y2 , y3. sort-carve-list([x1 , x2 , x3 , x4], [y1 , y2 , y3])
)
.

(single) ∀x , y. sort-carve-list([x], [y]) �⇒ x � y.
(double-1) ∀x , y. x1 ≤ x2 ∧ sort-carve-list([x1 , x2], [y1 , y2]) �⇒ x1 � y1.
(double-2) ∀x , y. x1 > x2 ∧ sort-carve-list([x], [y]) �⇒ x2 � y2.

We also wrote equivalent C code2 and verified the properties with SeaHorn.
Moreover, we wrote equivalent Java code and checked the properties for JayHorn
(version 0.6, the latest version as of January 29, 2019); it unnaturally quickly fin-
ished some verification tasks, and the results turned out to be highly unreliable.
With suspicion, we checked [1] � [] and it was judged to be true by JayHorn (fur-
thermore, [1] � [2] was not judged in ten minutes). Thus we simply excluded
JayHorn from the experiment table.

The experiment was carried out on MacBook Air 13-inch, Early 2015 with
Processor 2.2 GHz Intel Core i7. For the Z3 engine, we used version 4.8.4, the
latest stable release of Z3 as of January 29, 2019, and Spacer was used for the CHC
solver. For SeaHorn, we used the docker version tagged ‘latest’ as of January 29,
2019.

Table shows the time spent on each verification problem by each method (our
method, the address-based method, or SeaHorn); when the process did not end

1Properties are written in human-friendly forms. In order to verify (back), for example, we just
need to add CHC ⊥ ⇐� sort-carve-list(lx , [2, 1, 3]) and check the unsatisfiability.

2Unlike Rust code, ownership is not explicitly guaranteed.

40



in three minutes, it is regarded as ‘timeout’. For our method and the address-
based method, the time was taken from ‘:time.spacer.solve’ (the total time that
Spacer CHC solver spent) printed with the configuration ‘:print-statistics true’
on the Z3 engine. For SeaHorn, we measured the time for command sea horn
–solve *.bc (excluded the preprocessing time of sea fe *.c -o *.bc); actu-
ally, SeaHorn fell into timeout for all problems except (calc-1).

In summary, our method showed the best performance for every problem.

Time (s)
Problem Our Method Address-based SeaHorn
(calc-1) 0.03 0.05 1.55
(calc-2) 0.07 8.87 timeout
(calc-3) 0.15 1.74 timeout
(calc-4) 0.27 timeout timeout
(calc-5) 0.62 timeout timeout
(back) 0.14 0.32 timeout
(find) 0.40 timeout timeout
(size) 0.05 0.26 timeout

(single) 0.24 0.36 timeout
(double-1) 0.70 timeout timeout
(double-2) 1.03 timeout timeout

Table: Results of the Experiment

4.2 Useful Invariants under CHCs Obtained by the Translation

With CHCs obtained by our translation, some kinds of non-trivial and gen-
eral properties can be verified by giving quite simple invariants, as indicated in
the following three cases. Since description of such properties and invariants
requires (primitive) recursively defined relations and functions, common CHC
solvers such as Spacer cannot find those invariants, but sophisticated CHC solv-
ing techniques may find the invariants; absence of array theory can possibly be
an advantage in designing CHC solving techniques.

Case 1: Monotonicity of sort-carve-list

Under the CHCs given by Example C, suppose we want to verify that
sort-carve-list(lx , l y) implies that lx and l y are of the same length and that
an each element of lx is no less than the corresponding entry of l y. The property
is expressed as the following additional CHC (query), employing a (primitive)
recursively defined relation dec-list (the relation is newly introduced out of CHCs).

dec-list([], l y) :⇐⇒ l y � []
dec-list([x |lx′], l y) :⇐⇒ ∃ y , l y′. l y � [y |l y′] ∧ x ≥ y ∧ dec-list(lx′, l y′)

dec-list(lx , l y) ⇐� sort-carve-list(lx , l y)
The new set of CHCs with this query can be satisfied by the following evaluation
model using a recursively defined relation all-mut-dec. Note that we do not need
induction on dec-list and all-mut-dec in order to check validity of the evaluation.

all-mut-dec([]) :⇐⇒ ⊤
all-mut-dec([⟨x , x∗⟩|lmx′]) :⇐⇒ x ≥ x∗ ∧ all-mut-dec(lmx′)

41



split-mut-list(⟨lx , lx∗⟩, lmx) :⇐⇒
(
dec-list(lx , lx∗) ⇐� all-mut-dec(lmx)

)
insert-list(⟨x , x∗⟩, lm y , lmz) :⇐⇒

(
x ≥ x∗ ∧ all-mut-dec(lm y)

⇐� all-mut-dec(lmz)
)

sort-list(lmx , lm y) :⇐⇒
(
all-mut-dec(lmx) ⇐� all-mut-dec(lm y)

)
carve-list(n , lmx) :⇐⇒

(
n ≥ 0 �⇒ all-mut-dec(lmx)

)
sort-carve-list(lx , l y) :⇐⇒ dec-list(lx , l y)

On the other hand, giving invariants to verify the property dec-list(lx , l y) ⇐�

sort-carve-list-a(lx , l y) is not easy (in addition, it is probably impossible to avoid
inductive discussion on dec-list), since we need to trace correspondence between
arrays and lists.

Case 2: Monotonicity of carve-bfs-tree

Case 2 employs a technique similar to the one used in Case 1, but the situation
is a little more complex. Under the CHCs given by Example D, let us verify that
carve-bfs-tree(tx , t y) implies that tx and t y are of the same form (i.e. equal
modulo integer elements) and each integer element of tx is no less than the
corresponding element of t y. The property is expressed as the following query
employing a recursively defined relation dec-tree.

dec-tree(Leaf, t y) :⇐⇒ t y � Leaf
dec-tree(Node(tx′, x , tx′′), t y) :⇐⇒ ∃ t y′, y , t y′′.

t y � Node(t y′, y , t y′′) ∧ x ≥ y
∧ dec-tree(tx′, t y′)
∧ dec-tree(tx′′, t y′′)

dec-tree(tx , t y) ⇐� carve-bfs-tree(tx , t y)
The new set of CHCs with the query can be satisfied by the following evaluation
model described with a recursively defined relation all-dec-tree and a helper
relation both-all-dec-tree.

all-dec-tree([]) :⇐⇒ ⊤
all-dec-tree([⟨tx , tx∗⟩|lmtx′]) :⇐⇒ dec-tree(tx , tx∗) ∧ all-dec-tree(lmtx′)

both-all-dec-tree((lmtx , lmt y)) :⇐⇒ all-dec-tree(lmtx) ∧ all-dec-tree(lmt y)

push-queue(que , ⟨tx , tx∗⟩, que′) :⇐⇒(
both-all-dec-tree(que) ∧ dec-tree(tx , tx∗) ⇐⇒ both-all-dec-tree(que′)

)
reverse-list(lmtx , lmt y , lmtz) :⇐⇒

(
all-dec-tree(lmtx) ∧ all-dec-tree(lmt y)
⇐� all-dec-tree(lmtz)

)
pop-queue(que ,None) :⇐⇒ both-all-dec-tree(que)

pop-queue
(
que , Some(⟨tx , tx∗⟩, que′)

)
:⇐⇒

(
both-all-dec-tree(que)
⇐� dec-tree(tx , tx∗)
∧ both-all-dec-tree(que′)

)
go-bfs-tree(n , que) :⇐⇒

(
n ≥ 0 �⇒ both-all-dec-tree(que)

)
carve-bfs-tree(tx , t y) :⇐⇒ dec-tree(tx , t y)

42



Case 3: Total Decrease on sort-carve-list

Under the CHCs given by Example C, let us verify that sort-carve-list(lx , l y)
implies that the sum of lx minus the sum of (n − 1)n/2 where n is the size (or
length) of lx (and also of l y). The property is described as follows employing
recursively defined functions size-list and sum-list and a helper function △(n)
meaning the n-th triangular number (setting the zeroth and the first as 0, and
the second as 1).

size-list([]) :� 0
size-list([x |lx′]) :� 1 + size-list(lx′)

sum-list([]) :� 0
sum-list([x |lx′]) :� x + sum-list(lx′)

△(n) :� (n − 1)n/2

sum-list(lx) − sum-list(l y) � △(size-list(lx)) ⇐� sort-carve-list(lx , l y)
The new set of CHCs with the query can be satisfied by the following evaluation
model described with recursively defined functions cur-list and ret-list and a
helper function △(k , n).3

cur-list([]) :� []
cur-list([⟨x , x∗⟩|lmx′]) :� [x |cur-list(lmx′)]

ret-list([]) :� []
ret-list([⟨x , x∗⟩|lmx′]) :� [x∗ |ret-list(lmx′)]

△(k , n) :� (2k + n − 1)n/2

split-mut-list(⟨lx , lx∗⟩, lmx) :⇐⇒ lx � cur-list(lmx) ∧ lx∗ � ret-list(lmx)

insert-list(⟨x , x∗⟩, lm y , lmz)
:⇐⇒ x + sum-list(cur-list(lm y)) � sum-list(cur-list(lmz))

∧ x∗ + sum-list(ret-list(lm y)) � sum-list(ret-list(lmz))
∧ 1 + size-list(cur-list(lm y)) � size-list(cur-list(lmz))

sort-list(lmx , lm y)
:⇐⇒ sum-list(cur-list(lmx)) � sum-list(cur-list(lm y))

∧ sum-list(ret-list(lmx)) � sum-list(ret-list(lm y))
∧ size-list(cur-list(lmx)) � size-list(cur-list(lm y))

carve-list(n , lmx)
:⇐⇒ sum-list(cur-list(lmx)) − sum-list(ret-list(lmx))

� △
(
n , size-list(cur-list(lmx))

)
sort-carve-list(lx , l y) :⇐⇒ sum-list(lx) − sum-list(l y) � △(size-list(lx))

3If we should replace size-list(cur-list(lmx)) with size-list(lmx), we would need an inductive
discussion to prove that the former value equals the latter value.

43



Chapter 5

Related Work

CHC-based Verification in the Presence of Pointers and Destructive Updates

As introduced in Section 1.1.4, JayHorn [27, 28] and SeaHorn [54, 14] are
CHC-based verification tools for programs with pointers and destructive up-
dates. Judging from the results of Section 4.1, it seems that our method basi-
cally outperforms these existing verification tools for programs with ownership
types, although design and implementation of a verification framework using
our method is still a topic of future research.

Non-CHC-based Verification Techniques Regarding Ownership

Although CHC-based verification exploiting ownership types itself has not
been studied well, there are a number of non-CHC-based verification techniques
regarding ownership.

Suenaga and Kobayashi [43] propose a type system for a programming lan-
guage with memory allocation/deallocation primitives like the C language;
pointer types are augmented with fractional ownerships on the resources, which
prevents errors such as double-frees and memory leaks. The type system ad-
mits a polynomial-time type inference algorithm, which eventually serves as an
automated verification algorithm on memory-related errors.

CRUST [63] is a bounded model checker for detecting memory safety errors
including violations of Rust’s ownership discipline in a library using unsafe code
blocks. It works fully automatically, requiring no additional manual annotations;
test drivers are also automatically generated. It checks that calling a bounded
number of library methods do not trigger memory safety errors. The approach
successfully re-discovered some bugs from the developing versions of vector
(Vec<T>) and slice ([T]) libraries. However, CRUST does not check safety of
calling methods from multiple libraries in general.

Rust2Viper [17] verifies properties of annotated Rust programs using the
Viper verification infrastructure [60]; thus it provides a semi-automated verifica-
tion tool on Rust. Rust programs with special annotations (on purity, invariants,
preconditions, postconditions, etc.) are translated into code of Silver, an interme-
diate language of Viper that supports reasoning about permissions. Ownership
information of Rust is translated into permission information of Silver, which
helps to reduce the amount of manual annotations drastically.

Electrolysis [65] translates Rust code (more precisely, Mid-level Intermediate
Representation (MIR) of Rust code) into the purely functional language in the
Lean theorem prover [49], and exert verification with the system of Lean. Al-
though Electrolysis’ reduction into a purely functional language partly contains
a similar idea to our translation, the reduction imposes strong restrictions on

44



the usage of mutable references; it tries to manage the situation with encoding
mutable references with lenses [12] and executing static tracking of the refer-
ence relation, which prevents Electrolysis from supporting flexible operations
on mutable references, including returning arbitrary mutable references from a
function, nesting storing of mutable references, and mutable borrowing in loops
[66]. Our translation can manage those types of operations on mutable references
in a simple way.

Baranowski, He and Rakamarić [3] provide an automated verifier for Rust
by extending the SMACK verifier [57], which was first designed for LLVM IR
programs generated by the Clang C compiler. The tool supports a large class of
features in Rust, but exerts only bounded verification on Rust programs in the
paper; after complicated processes, bounded program verification problems are
finally translated into logic formulae (without fixed-point operations), which are
checked with existing SMT solvers.

RustBelt [25] provides the first formal (and machine-checked) safety proof
for a formal language λRust representing a realistic subset of Rust, including
basic libraries mem::swap, Rc, Cell and RefCell, as well as concurrent libraries
thread::spawn, rayon::join, Arc, Mutex and RwLock; the proof can be extended
to check new Rust libraries that uses unsafe code blocks. The semantics of λRust
is described into a higher-order concurrent separation logic Iris [26], which is
formalized on the Coq proof assistant [47]. To sum up, under the framework
of RustBelt, semi-automated verification of memory safety of Rust libraries with
unsafe code blocks can be performed with a logic Iris built on the Coq proof
assistant.

Formalization of Rust

This paper proposes a formal language Calculus of Ownership and Reference
(COR) in Chapter 3. The language represents a substantial subset of Rust, but
there are also other formalizations of Rust.

Patina [39] is a formal language that models the safe subset of Rust; it aims
to check that the novel ownership checking schemes of Rust successfully guar-
antees memory safety. Honestly following the structure of Rust, Patina employs
rather complicated concepts such as lvalues and rvalues. Patina is also still not
completely built up in the paper [39]; the expression and statement layers of
Patina do not support operations on product types and sum types.

RustBelt introduces a formal languageλRust [25] representing a realistic subset
of Rust; in fact, the language consists of two systems: the safe part, which is a
target of substructural typing, and the unsafe part, which allows many more
features and is not given any type system at all.1 The operational semantics of
the safe part is defined by embedding into the unsafe part; functions written in
the unsafe part are exposed to the safe part with appropriately typed interfaces.
This language design makes it possible to deal with a wide range of unsafe
libraries. Basically COR resembles the safe part of λRust, but is more simplified
compared to the part; some differences of COR from λRust are illustrated in
footnotes in Chapter 3.

1In the RustBelt paper, mostly only the safe part is illustrated; the unsafe part is described in
the technical appendix [24].

45



Chapter 6

Conclusion

We have presented a novel value-based method of CHC-based verification for
programs with pointers and destructive updates controlled by ownership types.
In our translation of programs into CHCs, each mutable reference is represented
as a pair of the current value and the future value that is passed at the end of
mutual borrowing, in contrast to the conventional address-based method which
represents a pointer simply as an address. We have informally demonstrated
that our translation is applicable for various programs of Rust, a programming
language with ownership types. In addition, we have formalized our translation
on a new formal language that represents a basic subset of Rust, and described
a conjecture on the correctness of the translation; giving a solid proof on the
correctness is a topic of future research. Finally, we have shown the advantage
of our method on program verification by an experiment along with discussion
on useful invariants.

Our method exploits both the features of CHCs and those of ownership types.
CHC representation does not make an explicit distinction between inputs and
outputs of functions; thus, in a sense, the logical description can be free from
the flow of calculation. Ownership types ensure the locality of effects of destruc-
tive updates. It is very likely that our method can be combined with various
existing CHC-based verification methods, and our method may also be fused
with some non-CHC-based verification methods by providing the underlying
representation with liberty from the computation flow.

Although we have formalized our method for our simplified formal language,
design and implementation of a new verification system for real-world Rust programs
using our method is an interesting topic of future research. Rust is aggressively
used by more and more programmers these days, and thus the creation of a
practical, efficient verification tool for Rust will surely contribute so much to
real-world developers. Furthermore, with sophisticated pointer analysis, our
method can possibly be applied to verification on C/C++ programs by cleverly
tracking switching of ownership.

46



Bibliography

[1] Amal Ahmed, Matthew Fluet, and Greg Morrisett. L3: A linear language
with locations. Fundamenta Informaticae, pages 397–449, 2007.

[2] Thibaut Balabonski, François Pottier, and Jonathan Protzenko. The design
and formalization of Mezzo, a permission-based programming language.
ACM Transactions on Programming Languages and Systems, 2016.

[3] Marek Baranowski, Shaobo He, and Zvonimir Rakamarić. Verifying Rust
programs with SMACK. In Automated Technology for Verification and Analysis,
pages 528–535, 2018.

[4] Nikolaj Bjørner, Kenneth L. McMillan, and Andrey Rybalchenko. Program
verification as satisfiability modulo theories. In SMT@ĲCAR, pages 3–11,
2012.

[5] Nikolaj Bjørner, Arie Gurfinkel, Ken McMillan, and Andrey Rybalchenko.
Horn Clause Solvers for Program Verification, pages 24–51. 2015.

[6] Aaron R. Bradley, Zohar Manna, and Henny B. Sipma. What’s decidable
about arrays? In Verification, Model Checking, and Abstract Interpretation,
pages 427–442, 2006.

[7] Toby Cathcart Burn, C.-H. Luke Ong, and Steven J. Ramsay. Higher-order
constrained Horn clauses for verification. In Principles of Programming Lan-
guages, pages 11:1–11:28, 2018.

[8] David G. Clarke, John M. Potter, and James Noble. Ownership types for
flexible alias protection. In Object-oriented Programming, Systems, Languages,
and Applications, pages 48–64, 1998.

[9] Olivier Danvy and Lasse R. Nielsen. Defunctionalization at work. In Prin-
ciples and Practice of Declarative Programming, pages 162–174, 2001.

[10] Robert DeLine and Manuel Fähndrich. Enforcing high-level protocols in
low-level software. In Programming Language Design and Implementation,
pages 59–69, 2001.

[11] Robert W. Floyd. Assigning meanings to programs. Mathematical Aspects
of Computer Science, Proceedings of Symposia in Applied Mathematics, 19:19–32,
1967.

[12] J. Nathan Foster, Michael B. Greenwald, Jonathan T. Moore, Benjamin C.
Pierce, and Alan Schmitt. Combinators for bi-directional tree transforma-
tions: A linguistic approach to the view update problem. In Principles of
Programming Languages, pages 233–246, 2005.

47



[13] Carlo A. Furia. What’s decidable about sequences? In Automated Technology
for Verification and Analysis, pages 128–142, 2010.

[14] Arie Gurfinkel, Temesghen Kahsai, Anvesh Komuravelli, and Jorge A.
Navas. The SeaHorn verification framework. In Computer Aided Verifica-
tion, pages 447–450, 2015.

[15] Arie Gurfinkel and Jorge A. Navas. A context-sensitive memory model
for verification of C/C++ programs. In Francesco Ranzato, editor, Static
Analysis, pages 148–168, 2017.

[16] Peter Habermehl, Radu Iosif, and Tomáš Vojnar. What else is decidable
about integer arrays? In Theory and Practice of Software, pages 474–489, 2008.

[17] Florian Hahn. Rust2Viper: Building a static verifier for Rust. Master’s thesis,
ETH Zürich, 2016.

[18] Michael Hind. Pointer analysis: Haven’t we solved this problem yet? In
Program Analysis for Software Tools and Engineering, pages 54–61, 2001.

[19] Charles Antony Richard Hoare. An axiomatic basis for computer program-
ming. Communications of the ACM, 12:576–580, 1969.

[20] Kryštof Hoder and Nikolaj Bjørner. Generalized property directed reacha-
bility. In Theory and Applications of Satisfiability Testing, pages 157–171, 2012.

[21] Kryštof Hoder, Nikolaj Bjørner, and Leonardo de Moura. µZ – an efficient
engine for fixed points with constraints. In Computer Aided Verification, pages
457–462, 2011.

[22] ISO Working Group 21. The C++ standards committee. http://www.
open-std.org/jtc1/sc22/wg21/, 2018.

[23] Trevor Jim, J. Greg Morrisett, Dan Grossman, Michael W. Hicks, James
Cheney, and Yanling Wang. Cyclone: A safe dialect of C. In USENIX
Annual Technical Conference, pages 275–288, 2002.

[24] Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer.
RustBelt: Securing the foundations of the Rust programming language –
technical appendix and Coq development. https://plv.mpi-sws.org/
rustbelt/popl18/, 2017.

[25] Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer.
RustBelt: Securing the foundations of the Rust programming language.
Principles of Programming Languages, 2018.

[26] Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Aleš Bizjak, Lars
Birkedal, and Derek Dreyer. Iris from the ground up: A modular foun-
dation for higher-order concurrent separation logic. Journal of Functional
Programming, 28, 2018.

[27] Temesghen Kahsai, Rody Kersten, Philipp Rümmer, Huascar Sanchez, and
Martin Schäf. JayHorn: A framework for verifying Java programs. http:
//jayhorn.github.io/jayhorn/, 2019.

[28] Temesghen Kahsai, Philipp Rümmer, Huascar Sanchez, and Martin Schäf.
JayHorn: A framework for verifying Java programs. In Computer Aided
Verification, pages 352–358, 2016.

48

http://www.open-std.org/jtc1/sc22/wg21/
http://www.open-std.org/jtc1/sc22/wg21/
https://plv.mpi-sws.org/rustbelt/popl18/
https://plv.mpi-sws.org/rustbelt/popl18/
http://jayhorn.github.io/jayhorn/
http://jayhorn.github.io/jayhorn/


[29] Kind Software. https://kindsoftware.com/products/opensource/
ESCJava2/, 2015.

[30] Teodor Knapik, Damian Niwinski, and Pawel Urzyczyn. Higher-order push-
down trees are easy. In Foundations of Software Science and Computation Struc-
tures, pages 205–222, 2002.

[31] Naoki Kobayashi, Étienne Lozes, and Florian Bruse. On the relationship
between higher-order recursion schemes and higher-order fixpoint logic. In
Principles of Programming Languages, pages 246–259, 2017.

[32] Naoki Kobayashi, Takeshi Tsukada, and Keiichi Watanabe. Higher-order
program verification via HFL model checking. In Programming Languages
and Systems, pages 711–738, 2018.

[33] Anvesh Komuravelli, Arie Gurfinkel, and Sagar Chaki. SMT-based model
checking for recursive programs. In Computer Aided Verification, pages 17–34,
2014.

[34] Anvesh Komuravelli, Arie Gurfinkel, Sagar Chaki, and Edmund M. Clarke.
Automated abstraction in SMT-based unbounded software model checking.
In Computer Aided Verification, pages 846–862, 2013.

[35] Chris Lattner and Vikram Adve. Automatic pool allocation: Improving per-
formance by controlling data structure layout in the heap. In Programming
Language Design and Implementation, pages 129–142, 2005.

[36] Karl Mazurak, Jianzhou Zhao, and Steve Zdancewic. Lightweight linear
types in System F◦. In Types in Language Design and Implementation, pages
77–88, 2010.

[37] Chris Okasaki. Purely Functional Data Structures. PhD thesis, Carnegie
Mellon University, 1996.

[38] C.-H. Luke Ong. On model-checking trees generated by higher-order recur-
sion schemes. In Logic in Computer Science, pages 81–90, 2006.

[39] Eric W. Reed. Patina : A formalization of the Rust programming language.
Master’s thesis, University of Washington, 2015.

[40] John Charles Reynolds. Definitional interpreters for higher-order program-
ming languages. Higher-Order and Symbolic Computation, 11(4):363–397, 1998.

[41] Philipp Ruemmer. The Eldarica model checker. https://github.com/
uuverifiers/eldarica, 2019.

[42] Sable Research Group. What is Soot? | soot. https://sable.github.io/
soot/, 2019.

[43] Kohei Suenaga and Naoki Kobayashi. Fractional ownerships for safe mem-
ory deallocation. In Asian Symposium on Programming Languages and Systems,
pages 128–143, 2009.

[44] The Agda Team. The Agda Wiki - Agda. https://wiki.portal.chalmers.
se/agda/pmwiki.php, 2018.

[45] The Boogie Team. Boogie. https://github.com/boogie-org/boogie,
2019.

49

https://kindsoftware.com/products/opensource/ESCJava2/
https://kindsoftware.com/products/opensource/ESCJava2/
https://github.com/uuverifiers/eldarica
https://github.com/uuverifiers/eldarica
https://sable.github.io/soot/
https://sable.github.io/soot/
https://wiki.portal.chalmers.se/agda/pmwiki.php
https://wiki.portal.chalmers.se/agda/pmwiki.php
https://github.com/boogie-org/boogie


[46] The Cheker Framework Team. The Checker Framework. https://
checkerframework.org/, 2018.

[47] The Coq Team. The Coq proof assistant. https://coq.inria.fr/, 2019.

[48] The Isabelle Team. Isabelle. https://isabelle.in.tum.de/, 2018.

[49] The Lean Team. Lean theorem prover. https://leanprover.github.io/,
2019.

[50] The Redox Team. Redox – your next(gen) OS. https://www.redox-os.org/,
2019.

[51] The Rust Team. Rust by example. https://doc.rust-lang.org/
rust-by-example/, 2019.

[52] The Rust Team. Rust programming language. https://www.rust-lang.
org, 2019.

[53] The Rust Team. The Rust programming language. https://doc.
rust-lang.org/book/, 2019.

[54] The SeaHorn Team. SeaHorn | a verification framework. http://seahorn.
github.io/, 2019.

[55] The SeaHorn Team. seahorn/crab: CoRnucopia of ABstractions: a
language-agnostic library for abstract interpretation. https://github.com/
seahorn/crab, 2019.

[56] The Servo Team. Servo, the parallel browser engine. https://servo.org/,
2019.

[57] The Smack Team. SMACK software verifier and verification toolchain.
https://github.com/smackers/smack, 2018.

[58] The Spacer Team. Spacer. https://spacer.bitbucket.io, 2019.

[59] The Spec# Team. Spec# - Microsoft Research. https://www.microsoft.
com/en-us/research/project/spec/, 2019.

[60] The Viper Team. http://www.pm.inf.ethz.ch/research/viper.html,
2019.

[61] The Why3 Team. Why3. http://why3.lri.fr/, 2018.

[62] The Z3 Team. The Z3 theorem prover. https://github.com/Z3Prover/z3,
2019.

[63] John Toman, Stuart Pernsteiner, and Emina Torlak. CRUST: A bounded
verifier for Rust. In Automated Software Engineering, pages 75–80, 2015.

[64] Jesse A. Tov and Riccardo Pucella. Practical affine types. In Principles of
Programming Languages, pages 447–458, 2011.

[65] Sebastian Ullrich. Simple verification of Rust programs via functional pu-
rification. Master’s thesis, Karlsruhe Institute of Technology, 2016.

[66] Sebastian Ullrich. Electrolysis reference. http://kha.github.io/
electrolysis/, 2019.

50

https://checkerframework.org/
https://checkerframework.org/
https://coq.inria.fr/
https://isabelle.in.tum.de/
https://leanprover.github.io/
https://www.redox-os.org/
https://doc.rust-lang.org/rust-by-example/
https://doc.rust-lang.org/rust-by-example/
https://www.rust-lang.org
https://www.rust-lang.org
https://doc.rust-lang.org/book/
https://doc.rust-lang.org/book/
http://seahorn.github.io/
http://seahorn.github.io/
https://github.com/seahorn/crab
https://github.com/seahorn/crab
https://servo.org/
https://github.com/smackers/smack
https://spacer.bitbucket.io
https://www.microsoft.com/en-us/research/project/spec/
https://www.microsoft.com/en-us/research/project/spec/
http://www.pm.inf.ethz.ch/research/viper.html
http://why3.lri.fr/
https://github.com/Z3Prover/z3
http://kha.github.io/electrolysis/
http://kha.github.io/electrolysis/


[67] Mahesh Viswanathan and Ramesh Viswanathan. A higher order modal
fixed point logic. In CONCUR 2004 - Concurrency Theory, pages 512–528,
2004.

51


	1 Introduction
	1.1 Program Verification
	1.1.1 CHC-based Program Verification
	1.1.2 Pointer Analysis
	1.1.3 Array Theory
	1.1.4 Program Verification Tools

	1.2 Ownership Types
	1.2.1 Introduction to Rust-style Ownership Types

	1.3 This Research

	2 Overview of the Translation
	2.1 Basic Ideas
	2.1.1 Operations on Mutable References Expressed in CHCs
	2.1.2 Extensions of the Translation

	2.2 Examples

	3 Formalization of the Translation
	3.1 Calculus of Ownership and Reference
	3.1.1 Syntax
	3.1.2 Examples
	3.1.3 Type Checking
	3.1.4 Operational Semantics

	3.2 Translation of COR Programs into Sets of CHCs
	3.2.1 Multi-sorted First-order Predicate Logic
	3.2.2 Translation

	3.3 Conjecture on the Correctness of the Translation
	3.3.1 Safety Invariant and the Preservation Lemma
	3.3.2 Natural Model Built on Operational Semantics
	3.3.3 Conjecture on the Correctness


	4 Experiment and Discussion
	4.1 Experiment on the Verification Performances
	4.2 Useful Invariants under CHCs Obtained by the Translation

	5 Related Work
	6 Conclusion
	Bibliography

