
Concurrent Quantum Separation Logic for
Fine-Grained Parallelism

Yusuke Matsushita

Kyoto University

ymat@fos.kuis.kyoto-u.ac.jp

Kengo Hirata

University of Edinburgh

k.hirata@sms.ed.ac.uk

Ryo Wakizaka

Kyoto University

wakizaka@fos.kuis.kyoto-u.ac.jp

Abstract
A promising approach to efficient quantum compu-

tation is to execute subroutines in parallel at a fine-

grained level. While such parallelism is subject to tricky

bugs, there was no quantum program logic that could

modularly verify the correctness of such parallelism.

To overcome this situation, we propose novel con-

current quantum separation logic that can modularly

reason about quantum programs under fine-grained

parallelism. Our logic enables flexible reasoning about

quantum superposition via new proof rules for linearly
combining Hoare triples. Also, our logic introduces frac-
tional tokens for sharing the same qubits between paral-

lel subroutines, introducing new reasoning rules for pro-
moting partial ownership into full ownership by atom-
icity. We demonstrate the effectiveness of our logic by

verifying a non-trivial parallelized quantum program.

1 Introduction
Today, quantum computers are steadily becoming larger,

and interest in realizing efficient quantum computation

has grown. A promising approach to that is to execute

subroutines in parallel at a fine-grained level [Gidney

and Ekerå 2021; Häner et al. 2022]. One practical goal

would be the automated parallelization of quantum pro-

grams, statically by the compiler or dynamically by

the runtime. While such parallelism is subject to tricky

bugs, there was no scalable quantum program logic

that could verify the correctness of such parallelism.

To tackle state mutation under concurrency, concurrent
separation logic [O’Hearn 2004; Brookes 2004; Brookes

and O’Hearn 2016] should be a great fit, but existing

quantum separation logic [Zhou et al. 2021; Le et al.

2022; Su et al. 2024] unfortunately supported neither

concurrency nor sharing of qubits, which is crucial for

fine-grained parallelism.

To overcome this situation, we propose novel con-

current quantum separation logic that can modularly

∗
This is an extended abstract of the talk presented at Theory

and Practice of Static Analysis (TPSA) 2025.

reason about quantum programs under fine-grained

parallelism. Our logic is particularly new in the follow-

ing two points. First, unlike the classical setting and

existing quantum separation logic, our logic enables

flexible reasoning about quantum superposition via new

proof rules for linearly combining Hoare triples. Second,
our logic features a fractional quantum points-to token

𝑞
𝑟↦→ |𝜓 ⟩, which can be shared between parallel subrou-

tines, introducing new reasoning rules for promoting
partial ownership into full ownership by atomicity. We

demonstrate the effectiveness of our logic by verifying

a non-trivial parallelized quantum program.

2 Target Quantum Language
Our target quantum language has the following syntax:

Exp ∋ 𝑒 F 𝑞 | ℓ | 𝑛 | () | op(𝑒) | 𝑥
| let 𝑥 = 𝑒1 in 𝑒2 | if 𝑒1 {𝑒2 } else {𝑒3 }
| while 𝑒1 {𝑒2 } | 𝑒1 ∥ 𝑒2 | atomic {𝑒 }
| qalloc | qfree 𝑒 | 𝑈 [𝑒] | mkref 𝑒 | ! 𝑒 | 𝑒1 ← 𝑒2

Val ∋ 𝑣 F 𝑞 | ℓ | 𝑛 | () | (𝑣, 𝑣 ′) 𝑒1; 𝑒2 ≜ let _ = 𝑒1 in 𝑒2

We write 𝑞 ∈ Qname for a qubit (name), ℓ ∈ Loc for a
heap location, 𝑛 ∈ Z for an integer, op for pure opera-
tors such as +. For concurrency, aside from the standard

parallel execution 𝑒1 ∥ 𝑒2, we introduce atomic execution
atomic {𝑒 }, which excludes interruption from other

processes while executing 𝑒 . Qubit and heap operations

are pretty standard. Quantum measurements are not

yet part of our language, and handling their stochastic

behavior remains future work (see § 6). Please refer to

Appendix A for the operational semantics.

3 Motivating Example
As a running example, we consider the following paral-

lelized quantum program:

CCY[𝑥, 𝑧,𝑦]; 𝑈1 [𝑧]; 𝑈2 [𝑧]; 𝑈3 [𝑧]; CCZ[𝑥, 𝑧,𝑦]
∥ atomic { X[𝑥]; CH[𝑥,𝑦]; X[𝑥] } (*)

Yusuke Matsushita, Kengo Hirata, and Ryo Wakizaka

It executes in parallel two processes, which can be il-

lustrated as the following circuits:

𝐶1 ≡

𝑥

𝑦

𝑧

Y Z

𝑈1 𝑈2 𝑈3

𝐶2 ≡
𝑥

𝑦

𝑧

H

The two processes may be executed sequentially (i.e.,

𝐶1;𝐶2 or 𝐶2;𝐶1), or process 2 may be executed during

the execution of process 1 as follows:

𝑥

𝑦

𝑧

Y H Z

𝑈1 𝑈2 𝑈3

It is easy to see that the results are the same across

these execution patterns.

Our goal is to prove the correctness of such a paral-

lelized quantum program: regardless of the execution

order, the program should consistently reach the same

final state. This enables a compiler to safely reorder the

execution sequence of concurrent circuits, provided it

adheres to the program’s semantics. However, modu-

larly proving the correctness of a parallelized quantum

program like (*) presents the following two challenges:

Challenge 1 Multiple processes may write to the

same qubit. In the program (*), both processes

write to the shared qubit 𝑦 in parallel. This is

naively a race condition but actually safe thanks

to the commutativity of the gates.

Challenge 2 Atomic execution should be treated

specially. In (*), Process 2 writes to 𝑥 but then

reverts its value within an atomic execution, and

thus does not interfere with Process 1.

4 Our Quantum Separation Logic
Now we present our core contribution, the concurrent

quantum separation logic for fine-grained parallelism.

Please refer to Appendix B for a complete list of proof

rules and Appendix C for the semantic model.

Propositions. Propositions are as follows:
SLProp ∋ 𝑃,𝑄, 𝑅 F 𝑝 | 𝑃 ∧𝑄 | 𝑃 ∨𝑄 | 𝑃→𝑄

| ∀𝑥 . 𝑃𝑥 | ∃𝑥 . 𝑃𝑥 | emp | 𝑃 ∗𝑄 | 𝑃 −∗𝑄
| 𝑞 𝑟↦→ |𝜓 ⟩ | [𝑞]𝑟 | ℓ

𝑟↦→ 𝑣

𝑞 ↦→ |𝜓 ⟩ ≜ 𝑞
1↦→ |𝜓 ⟩ ℓ ↦→ 𝑣 ≜ ℓ

1↦→ 𝑣

Wehave the standard connectives from separation logic,

including the separating conjunction 𝑃 ∗𝑄 . Any pure

proposition 𝑝 ∈ Prop can be embedded.

Notably, we introduce the fractional quantum points-
to token 𝑞

𝑟↦→ |𝜓 ⟩, a novel proposition that asserts with

a fraction 𝑟 ∈ (0, 1] that the current pure state of the
qubits 𝑞 = 𝑞1, . . . , 𝑞𝑛 is |𝜓 ⟩ ∈

(
C2

)⊗𝑛
, analogously to

the classical points-to token ℓ
𝑟↦→ 𝑣 [Bornat et al. 2005].

The model for this machinery is non-trivial and trickier

than the classical setting; please see Appendix C.

We also introduce the qubit token [𝑞]𝑟 , which asserts

with a fraction 𝑟 that the qubit 𝑞 is allocated and not

freed. It is useful for sharing dirty qubits, qubits without
state information, between parallel subroutines. We use

the shorthand [𝑞]𝑟 ≜ ∗𝑖 [𝑞𝑖]𝑟 for 𝑞 = 𝑞1, . . . , 𝑞𝑛 .

We have the following proof rules for quantum own-

ership, as naturally expected:

(𝑞, 𝑞′) ↦→ |𝜓 ⟩ |𝜓 ′⟩ ⊣⊢ 𝑞 ↦→ |𝜓 ⟩ ∗ 𝑞′ ↦→ |𝜓 ′⟩

𝑞
𝑟+𝑟 ′↦→ |𝜓 ⟩ ⊣⊢ 𝑞 𝑟↦→ |𝜓 ⟩ ∗ 𝑞 𝑟 ′↦→ |𝜓 ⟩{

emp
}
qalloc

{
𝑞. 𝑞 ↦→ |0⟩ ∗ [𝑞]1

}{
𝑞 ↦→ |0⟩ ∗ [𝑞]1

}
qfree 𝑞

{
emp

}{
(𝑞, 𝑞′) ↦→ |𝜓 ⟩

}
𝑈 [𝑞]

{
(𝑞, 𝑞′) ↦→ (𝑈 ⊗ I) |𝜓 ⟩

}
Quantum superposition. One peculiar phenomenon

in quantum computation is quantum superposition.While

we can easily reason about classical conditional branch-

ing by case analysis between 1 and 0 on a classical bit,

reasoning about controlled gates such as CX is much

trickier because a qubit can be an arbitrary quantum

superposition 𝛼 |1⟩ +𝛽 |0⟩. To address this, we newly in-
troduce the following rule for linearly combining Hoare
triples, unlike existing quantum separation logic:{

𝑞 ↦→ |𝜓 ⟩ ∗ 𝑃
}
𝑒
{
𝑞 ↦→ |𝜑⟩ ∗ 𝑄

}{
𝑞 ↦→ |𝜓 ′⟩ ∗ 𝑃

}
𝑒
{
𝑞 ↦→ |𝜑 ′⟩ ∗ 𝑄

}
𝑃,𝑄 : precise{

𝑞 ↦→ (𝛼 |𝜓 ⟩ + 𝛽 |𝜓 ′⟩) ∗ 𝑃
}
𝑒
{
𝑞 ↦→ (𝛼 |𝜑⟩ + 𝛽 |𝜑 ′⟩) ∗ 𝑄

}
qptto-lincomb

The exactness judgment 𝑃 : precise means that the SL

proposition 𝑃 is satisfied by a unique (or no) resource

(for example, [𝑥]1 : precise and ⊥ : precise hold but

(∃𝑞. [𝑥]𝑞) : precise does not hold). At a high level, this

performs a ‘case analysis’ over the bases |𝜓 ⟩ and |𝜓 ′⟩ of
the input pure state 𝛼 |𝜓 ⟩ + 𝛽 |𝜓 ′⟩. This actually solves

Challenge 1 in § 3, because the ‘case analysis’ over 𝑥

eliminates the spurious race condition. See the discus-

sion in § 5 for details.

Concurrent Quantum Separation Logic for Fine-Grained Parallelism

Concurrency. We have the following for concurrency:{
𝑃
}
𝑒
{
𝑣 . 𝑄𝑣

} {
𝑃 ′

}
𝑒′

{
𝑣 ′ . 𝑄 ′

𝑣′
}{

𝑃 ∗ 𝑃 ′
}
𝑒 ∥ 𝑒′

{
(𝑣, 𝑣 ′). 𝑄𝑣 ∗ 𝑄 ′𝑣′

} parallel{
𝑃
}
𝑒
{
𝑣 . 𝑄𝑣

}{
𝑃
}
atomic {𝑒 }

{
𝑣 . 𝑄𝑣

} atomic

Parallel execution 𝑒 ∥ 𝑒′ admits the standard proof rule

with the separating conjunction. For atomic execution

atomic {𝑒 }, we simply verify the Hoare triple over 𝑒 ,

with promotion by atomicity explained below.

Promotion by atomicity. We say an expression 𝑒

is atomic if 𝑒 can take only one step. In particular,

atomic {𝑒 } and 𝑈 [𝑞] are atomic. For atomic expres-

sions, we can use the following rules for promotion:

𝑒 is atomic 𝑃 : out 𝑞{
𝑞 ↦→ |𝜓 ⟩ ∗ [𝑞]1 ∗ 𝑃

}
𝑒
{
𝑣 . 𝑞 ↦→ |𝜓 ⟩ ∗ [𝑞]1 ∗ 𝑄𝑣

}{
𝑞

𝑟↦→ |𝜓 ⟩ ∗ 𝑃
}
𝑒
{
𝑣 . 𝑞

𝑟↦→ |𝜓 ⟩ ∗ 𝑄𝑣

}
qptto-promote

𝑒 is atomic 𝑃 : out 𝑞
∀ |𝜓 ⟩ .

{
𝑞 ↦→ |𝜓 ⟩ ∗ [𝑞]1 ∗ 𝑃

}
𝑒
{
𝑣 . 𝑞 ↦→ |𝜓 ⟩ ∗ [𝑞]1 ∗ 𝑄𝑣

}{
[𝑞]𝑟 ∗ 𝑃

}
𝑒
{
𝑣 . [𝑞]𝑟 ∗ 𝑄𝑣

}
qtok-promote

By exploiting atomicity, partial ownership of a frac-

tional points-to 𝑞
𝑟↦→ |𝜓 ⟩ (qptto-promote) or qubit

[𝑞]𝑟 (qtok-promote) token can be promoted into the

full points-to and qubit tokens. Here, the judgment 𝑃 :

out 𝑞 means that the proposition 𝑃 does not own any

ownership over the qubits 𝑞. For example, 𝑞′ ↦→ |𝜓 ⟩ :

out 𝑞 holds if 𝑞′ ∉ {𝑞}. Promotion solves Challenge 2 in

§ 3, enabling temporary writes in an atomic execution.

5 Verification of the Motivating
Example

Now we demonstrate how our separation logic can

verify the concurrent quantum (*) presented in § 3.

First, we apply qptto-lincomb to decompose the

superposition of 𝑥 ’s pure state |𝜒⟩ = 𝛼 |1⟩ + 𝛽 |0⟩:{
(𝑥,𝑦, 𝑧) ↦→ |𝜒⟩ |𝜓 ⟩ |𝜑⟩ ∗ [𝑦]1

}{
(𝑥,𝑦, 𝑧) ↦→ |1⟩ |𝜓 ⟩ |𝜑⟩ ∗ [𝑦]1

} {
(𝑥,𝑦, 𝑧) ↦→ |0⟩ |𝜓 ⟩ |𝜑⟩ ∗ [𝑦]1

}{ (
𝑥

1/2
↦→ |1⟩ ∗ (𝑦, 𝑧) ↦→ |𝜓 ⟩ |𝜑⟩

)
∗
(
𝑥

1/2
↦→ |1⟩ ∗ [𝑦]1

) }{ (
𝑥

1/2
↦→ |0⟩ ∗ [𝑦]1 ∗ 𝑧 ↦→ |𝜑⟩

)
∗
(
𝑥

1/2
↦→ |0⟩ ∗ 𝑦 ↦→ |𝜓 ⟩

) }
CCY[𝑥, 𝑧,𝑦]; 𝑈1 [𝑧]; 𝑈2 [𝑧]; 𝑈3 [𝑧]; CCZ[𝑥, 𝑧,𝑦]
∥ atomic { X[𝑥]; CH[𝑥,𝑦]; X[𝑥] }{ (
𝑥

1/2
↦→ |1⟩ ∗ (𝑦, 𝑧) ↦→ 𝑈 ′+ (|𝜓 ⟩ |𝜑⟩)

)
∗
(
𝑥

1/2
↦→ |1⟩ ∗ [𝑦]1

) }{ (
𝑥

1/2
↦→ |0⟩ ∗ [𝑦]1 ∗ 𝑧 ↦→ 𝑈+ |𝜑⟩

)
∗
(
𝑥

1/2
↦→ |0⟩ ∗ 𝑦 ↦→ H |𝜓 ⟩

) }

{
𝑥 ↦→ |1⟩ ∗ (𝑦, 𝑧) ↦→ 𝑈 ′+ (|𝜓 ⟩ |𝜑⟩) ∗ [𝑦]1

}{
𝑥 ↦→ |0⟩ ∗ 𝑦 ↦→ H |𝜓 ⟩ ∗ 𝑧 ↦→ 𝑈+ |𝜑⟩ ∗ [𝑦]1

}{
(𝑥,𝑦, 𝑧) ↦→ If

(
𝑈 ′+, H ⊗ 𝑈+

)
(|𝜒⟩ |𝜓 ⟩ |𝜑⟩) ∗ [𝑦]1

}
We use the shorthand𝑈+ ≜ 𝑈3𝑈2𝑈1,𝑈

′
+ ≜ CZ𝑧𝑦 (I ⊗

𝑈+) CY𝑧𝑦 and define the linear map If (𝑈1,𝑈0) by If (𝑈1,

𝑈0) (|𝑏⟩ |𝜔⟩) ≜ |𝑏⟩ · 𝑈𝑏 |𝜔⟩ for 𝑏 ∈ {1, 0}. The fi-

nal postcondition says that, regardless of execution

scheduling, the final state of the qubits 𝑥,𝑦, 𝑧 is always

set to If
(
𝑈 ′+, H ⊗𝑈+

)
(|𝜒⟩ |𝜓 ⟩ |𝜑⟩). By qptto-lincomb,

the verification boils down to the two cases where

the qubit 𝑥 stores |1⟩ (marked green) and |0⟩ (marked

blue). Here,

{
𝑃1

}{
𝑃2

}
𝑒
{
𝑄1

}{
𝑄2

}
indicates that both{

𝑃1

}
𝑒
{
𝑄1

}
and

{
𝑃2

}
𝑒
{
𝑄2

}
hold. Notably, how to

split the ownership between two processes in paral-

lel can depend on whether 𝑥 stores |1⟩ or |0⟩. More

concretely, here the full points-to token 𝑦 ↦→ |𝜓 ⟩ over
the qubit 𝑦 is given to Process 1 if 𝑥 stores |1⟩ and to

Process 2 if 𝑥 stores |0⟩. This solves Challenge 1.
We can verify Process 1 as follows:{
𝑥

1/2
↦→ |1⟩ ∗ (𝑦, 𝑧) ↦→ |𝜓 ⟩ |𝜑⟩

} {
𝑥

1/2
↦→ |0⟩ ∗ [𝑦]1 ∗ 𝑧 ↦→ |𝜑⟩

}
CCY[𝑥, 𝑧,𝑦]{
𝑥

1/2
↦→ |1⟩ ∗ (𝑦, 𝑧) ↦→ CY𝑧𝑦 (|𝜓 ⟩ |𝜑⟩)

} {
𝑥

1/2
↦→ |0⟩ ∗ [𝑦]1 ∗ 𝑧 ↦→ |𝜑⟩

}
𝑈1 [𝑧];𝑈2 [𝑧];𝑈3 [𝑧];{
𝑥

1/2
↦→ |1⟩ ∗ (𝑦, 𝑧) ↦→ 𝑈 ′′+ (|𝜓 ⟩ |𝜑⟩)

} {
𝑥

1/2
↦→ |0⟩ ∗ [𝑦]1 ∗ 𝑧 ↦→ 𝑈+ |𝜑⟩

}
CCZ[𝑥, 𝑧,𝑦]{
𝑥

1/2
↦→ |1⟩ ∗ (𝑦, 𝑧) ↦→ 𝑈 ′+ (|𝜓 ⟩ |𝜑⟩)

} {
𝑥

1/2
↦→ |0⟩ ∗ [𝑦]1 ∗ 𝑧 ↦→ 𝑈+ |𝜑⟩

}
We use the shorthand𝑈 ′′+ ≜ (I⊗𝑈+) CY𝑧𝑦 . Notably, the
qubit token [𝑦]1 suffices for performing CCX[𝑥,𝑦, 𝑧]
and CCY[𝑥, 𝑧,𝑦] in the case where 𝑥 stores |0⟩.
We can verify Process 2 as follows:{
𝑥

1/2
↦→ |1⟩ ∗ [𝑦]1

} {
𝑥

1/2
↦→ |0⟩ ∗ 𝑦 ↦→ |𝜓 ⟩

}
atomic

{ {
𝑥 ↦→ |1⟩ ∗ [𝑦]1

} {
𝑥 ↦→ |0⟩ ∗ 𝑦 ↦→ |𝜓 ⟩

}
X[𝑥];{

𝑥 ↦→ |0⟩ ∗ [𝑦]1
} {

𝑥 ↦→ |1⟩ ∗ 𝑦 ↦→ |𝜓 ⟩
}
CH[𝑥,𝑦];{

𝑥 ↦→ |0⟩ ∗ [𝑦]1
} {

𝑥 ↦→ |1⟩ ∗ 𝑦 ↦→ H |𝜓 ⟩
}
X[𝑥];{

𝑥 ↦→ |1⟩ ∗ [𝑦]1
} {

𝑥 ↦→ |0⟩ ∗ 𝑦 ↦→ H |𝜓 ⟩
} }{

𝑥
1/2
↦→ |1⟩ ∗ [𝑦]1

} {
𝑥

1/2
↦→ |0⟩ ∗ 𝑦 ↦→ H |𝜓 ⟩

}
Remarkably, we can promote the partial points-to token
𝑥

1/2↦→ |𝜒⟩ into the full points-to token 𝑥 ↦→ |𝜒⟩ by
exploiting the atomicity of atomic, because the value
of 𝑥 is finally restored. This solves Challenge 2.

6 Future Work
We plan to apply our separation logic to verify more

practical quantum programs. We are particularly inter-

ested in verifying optimization techniques that involve

Yusuke Matsushita, Kengo Hirata, and Ryo Wakizaka

advanced concurrency, entangled copying, or uncom-

putation [Bichsel et al. 2020]. Furthermore, we aim to

develop new methods for automatically parallelizing

quantum programs via ownership analysis based on

our separation logic. Also, future work remains in ex-

tending our concurrent quantum separation logic to

support measurement. A fundamental challenge is how

to extend proof rules like qptto-lincomb for superposi-

tion to that setting. For precise analysis of probabilistic

distribution, an approach like outcome separation logic

[Zilberstein et al. 2024] may be a good fit.

References
Benjamin Bichsel, Maximilian Baader, Timon Gehr, and Martin T.

Vechev. 2020. Silq: a high-level quantum language with safe

uncomputation and intuitive semantics. In Proceedings of the
41st ACM SIGPLAN International Conference on Programming
Language Design and Implementation, PLDI 2020, London, UK,
June 15-20, 2020, Alastair F. Donaldson and Emina Torlak (Eds.).

ACM, 286–300. https://doi.org/10.1145/3385412.3386007
Richard Bornat, Cristiano Calcagno, Peter W. O’Hearn, and

Matthew J. Parkinson. 2005. Permission accounting in sepa-

ration logic. In Proceedings of the 32nd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2005,
Long Beach, California, USA, January 12-14, 2005, Jens Palsberg
and Martín Abadi (Eds.). ACM, 259–270. https://doi.org/10.1145/
1040305.1040327

Stephen Brookes and Peter W. O’Hearn. 2016. Concurrent sep-

aration logic. ACM SIGLOG News 3, 3 (2016), 47–65. https:
//doi.org/10.1145/2984450.2984457

Stephen D. Brookes. 2004. A Semantics for Concurrent Separa-

tion Logic. In CONCUR 2004 - Concurrency Theory, 15th In-
ternational Conference, London, UK, August 31 - September 3,
2004, Proceedings (Lecture Notes in Computer Science, Vol. 3170),
Philippa Gardner and Nobuko Yoshida (Eds.). Springer, 16–34.

https://doi.org/10.1007/978-3-540-28644-8_2
Craig Gidney and Martin Ekerå. 2021. How to factor 2048 bit RSA

integers in 8 hours using 20 million noisy qubits. Quantum 5

(2021), 433. https://doi.org/10.22331/Q-2021-04-15-433
Thomas Häner, Vadym Kliuchnikov, Martin Roetteler, Mathias

Soeken, and Alexander Vaschillo. 2022. QParallel: Explicit

Parallelism for Programming Quantum Computers. CoRR
abs/2210.03680 (2022). https://doi.org/10.48550/ARXIV.2210.
03680 arXiv:2210.03680

Xuan-Bach Le, Shang-Wei Lin, Jun Sun, and David Sanán. 2022.

A quantum interpretation of separating conjunction for local

reasoning of quantum programs based on separation logic. Proc.
ACM Program. Lang. 6, POPL (2022), 1–27. https://doi.org/10.
1145/3498697

Peter W. O’Hearn. 2004. Resources, Concurrency and Local Rea-

soning. In CONCUR 2004 - Concurrency Theory, 15th Interna-
tional Conference, London, UK, August 31 - September 3, 2004, Pro-
ceedings (Lecture Notes in Computer Science, Vol. 3170), Philippa
Gardner and Nobuko Yoshida (Eds.). Springer, 49–67. https:
//doi.org/10.1007/978-3-540-28644-8_4

Bonan Su, Li Zhou, Yuan Feng, and Mingsheng Ying. 2024. BI-based

Reasoning about Quantum Programs with Heap Manipulations.

arXiv:2409.10153 [quant-ph] https://arxiv.org/abs/2409.10153
Li Zhou, Gilles Barthe, Justin Hsu, Mingsheng Ying, and Nengkun

Yu. 2021. A Quantum Interpretation of Bunched Logic & Quan-

tum Separation Logic. In 36th Annual ACM/IEEE Symposium
on Logic in Computer Science, LICS 2021, Rome, Italy, June 29 -
July 2, 2021. IEEE, 1–14. https://doi.org/10.1109/LICS52264.2021.
9470673

Noam Zilberstein, Angelina Saliling, and Alexandra Silva. 2024.

Outcome Separation Logic: Local Reasoning for Correctness and

Incorrectness with Computational Effects. Proc. ACM Program.
Lang. 8, OOPSLA1 (2024), 276–304. https://doi.org/10.1145/
3649821

https://doi.org/10.1145/3385412.3386007
https://doi.org/10.1145/1040305.1040327
https://doi.org/10.1145/1040305.1040327
https://doi.org/10.1145/2984450.2984457
https://doi.org/10.1145/2984450.2984457
https://doi.org/10.1007/978-3-540-28644-8_2
https://doi.org/10.22331/Q-2021-04-15-433
https://doi.org/10.48550/ARXIV.2210.03680
https://doi.org/10.48550/ARXIV.2210.03680
https://arxiv.org/abs/2210.03680
https://doi.org/10.1145/3498697
https://doi.org/10.1145/3498697
https://doi.org/10.1007/978-3-540-28644-8_4
https://doi.org/10.1007/978-3-540-28644-8_4
https://arxiv.org/abs/2409.10153
https://arxiv.org/abs/2409.10153
https://doi.org/10.1109/LICS52264.2021.9470673
https://doi.org/10.1109/LICS52264.2021.9470673
https://doi.org/10.1145/3649821
https://doi.org/10.1145/3649821

Concurrent Quantum Separation Logic for Fine-Grained Parallelism

A Operational Semantics of the Target Quantum Language
Here we present the operational semantics of the target quantum language of § 2.

Transition label. We use the following transition labels in our operational semantics:

Label ∋ 𝐿 F qalloc = 𝑞 | qfree 𝑞 | 𝑈 [𝑞] | mkref 𝑣 = ℓ | ! ℓ = 𝑣 | ℓ ← 𝑣

Labeled transition over expressions. Evaluation contexts have the following form:

𝐾 F · | op(𝑣, 𝐾, 𝑒) | let 𝑥 = 𝐾 in 𝑒 | if 𝐾 {𝑒1 } else {𝑒2 } | 𝐾 ∥ 𝑒 | 𝑒 ∥ 𝐾
| qfree 𝐾 | 𝑈 [𝑣, 𝐾, 𝑒] | mkref 𝐾 | !𝐾 | 𝐾 ← 𝑒 | 𝑣 ← 𝐾

The labeled transition 𝑒
𝐿̄−→ 𝑒′ (where 𝐿 ∈ Label∗ is a finite sequence of transition labels) is inductively defined by

the following rules:

𝑒
𝐿̄−→ 𝑒′

𝐾 [𝑒] 𝐿̄−→ 𝐾 [𝑒′]

op(𝑣) = 𝑣 ′
op(𝑣) → 𝑣 ′

let 𝑥 = 𝑣 in 𝑒 → 𝑒 [𝑣/𝑥]

if 𝑏 {𝑒1 } else {𝑒0 } → 𝑒𝑏 while 𝑒1 {𝑒2 } → if 𝑒1 {𝑒2; while 𝑒1 {𝑒2 } }

𝑣1 ∥ 𝑣2 → (𝑣1, 𝑣2)
𝑒1

𝐿1−→ 𝑒2

𝐿2−→ · · · 𝐿𝑛−−→ 𝑣

atomic {𝑒1 }
𝐿1, 𝐿2, ..., 𝐿𝑛−−−−−−−−−→ 𝑣

qalloc
qalloc=𝑞
−−−−−−−−→ 𝑞 qfree 𝑞

qfree𝑞
−−−−−→ () 𝑈 [𝑞]

𝑈 [𝑞]
−−−−→ ()

mkref 𝑣
mkref 𝑣 = ℓ−−−−−−−−→ ℓ ! ℓ

!ℓ = 𝑣−−−−→ 𝑣 ℓ ← 𝑣
ℓ←𝑣−−−→ ()

Here we use the shorthand if 𝑒1 {𝑒2 } ≜ if 𝑒1 {𝑒2 } else { () }.
The labeled infinite transition 𝑒

®𝐿−→ ∞ (where ®𝐿 ∈ Label∗ ∪ Label𝜔 is a possibly infinite sequence of transition
labels) is defined by the following rules:

𝑒1

𝐿1−→ 𝑒2

𝐿2−→ · · · 𝐿𝑘−1−−−→ 𝑒𝑘
𝐿𝑘−−→ · · ·

𝐾 [atomic {𝑒1 }]
𝐿1, 𝐿2, ..., 𝐿𝑘−1, 𝐿𝑘 , ...−−−−−−−−−−−−−−−→ ∞

𝑒1

𝐿1−→ 𝑒2

𝐿2−→ · · · 𝐿𝑛−−→ 𝑒𝑛+1
®𝐿′−→ ∞

𝐾 [atomic {𝑒1 }]
𝐿1, 𝐿2, ..., 𝐿𝑛, ®𝐿′−−−−−−−−−−−→ ∞

Atomicity. We say an expression 𝑒 is atomic if 𝑒
𝐿̄−→ 𝑒′ entails 𝑒′ ∈ Val for any expression 𝑒′ and labels 𝐿. The

following rules hold:

atomic {𝑒 } is atomic qalloc is atomic qfree 𝑣 is atomic 𝑈 [𝑣] is atomic

mkref 𝑣 is atomic !𝑣 is atomic 𝑣 ← 𝑣 ′ is atomic

Labeled transition over global states. The global state we consider is as follows:

Quantum memory 𝑀 = (qs, |𝜓 ⟩) ∈ Qmem ≜
∐

qs ∈ Powfin Qname

(
C2

)⊗qs
Heap memory 𝐻 ∈ Heap ≜ Loc

fin
⇀ Val

Global state 𝐺 = (𝑀,𝐻) ∈ Glob ≜ Qmem × Heap

The labeled global state transition 𝐺
𝐿−→ 𝐺 ′ is defined by the following rules:

𝑞 ∉ qs(
(qs, |𝜓 ⟩), 𝐻

) qalloc = 𝑞
−−−−−−−−→

(
(qs ∪ {𝑞}, |𝜓 ⟩qs ⊗ |0⟩𝑞), 𝐻

)

Yusuke Matsushita, Kengo Hirata, and Ryo Wakizaka

𝑞 ∉ qs(
(qs ∪ {𝑞}, |𝜓 ⟩qs ⊗ |0⟩𝑞), 𝐻

) qfree𝑞
−−−−−→

(
(qs, |𝜓 ⟩), 𝐻

)
𝑞 are pairwise distinct {𝑞} ∩ qs ≠ ∅(

({𝑞} ∪ qs, |𝜓 ⟩), 𝐻
) 𝑈 [𝑞]
−−−−→

(
({𝑞} ∪ qs, 𝑈𝑞 |𝜓 ⟩), 𝐻

)
ℓ ∉ dom𝐻

(𝑀,𝐻) mkref 𝑣 = ℓ−−−−−−−−→ (𝑀,𝐻 {ℓ := 𝑣})

ℓ ∈ dom𝐻 𝑣 = 𝐻 [ℓ]

(𝑀,𝐻) !ℓ = 𝑣−−−−→ (𝑀,𝐻)

ℓ ∈ dom𝐻

(𝑀,𝐻) ℓ← 𝑣−−−−→ (𝑀,𝐻 {ℓ := 𝑣})
Expression-state transition. The expression-state transition (𝑒,𝐺) → (𝑒′,𝐺 ′) is defined by the following rule:

𝑒
𝐿1,𝐿2,· · · ,𝐿𝑛−−−−−−−−→ 𝑒′ 𝐺1

𝐿1−→ 𝐺2

𝐿2−→ · · · 𝐿𝑛−−→ 𝐺𝑛+1
(𝑒,𝐺1) → (𝑒′,𝐺𝑛+1)

The expression-state infinite transition (𝑒,𝐺) → ∞ is defined by the following rule:

𝑒
𝐿1,𝐿2,...,𝐿𝑘−1,𝐿𝑘 ,...−−−−−−−−−−−−−→ ∞ 𝐺1

𝐿1−→ 𝐺2

𝐿2−→ · · · 𝐿𝑘−1−−−→ 𝐺𝑘

𝐿𝑘−−→ · · ·
(𝑒,𝐺1) → ∞

The reducibility red(𝑒,𝐺) is defined by the following rule:

(𝑒,𝐺) → (𝑒′,𝐺 ′)
red(𝑒,𝐺)

(𝑒,𝐺) → ∞
red(𝑒,𝐺)

B Proof Rules of Our Separation Logic
Judgments. We use the following judgments:

𝑃 ⊢ 𝑄
{
𝑃
}
𝑒
{
𝑣 . 𝑄𝑣

}
𝑃 : out 𝑎

As usual, we introduce the entailment judgment 𝑃 ⊢ 𝑄 and the (partial) Hoare triple

{
𝑃
}
𝑒
{
𝑣 . 𝑄𝑣

}
(where 𝑣 is

the return value of the execution). We also introduce the ownership exclusion judgment 𝑃 : out 𝑎, meaning that a

proposition 𝑃 ∈ SLProp does not own a qubit or location 𝑎 ∈ Qname ∪ Loc.
We use the following syntax sugar:

𝑃 ⊣⊢ 𝑄 ≜ (𝑃 ⊢ 𝑄) ∧ (𝑄 ⊢ 𝑃)
{
𝑃
}
𝑒
{
𝑄
}

≜
{
𝑃
}
𝑒
{
_. 𝑄

}
𝑃 : out 𝑎 ≜ ∀𝑖 . (𝑃 : out 𝑎𝑖)

General proof rules.

𝑃 ⊢ 𝑃 𝑃 ⊢ 𝑄 𝑄 ⊢ 𝑅
𝑃 ⊢ 𝑅

𝑝 holds

𝑃 ⊢ 𝑝
𝑃 ⊢ 𝑝 𝑝 implies 𝑃 ⊢ 𝑄

𝑃 ⊢ 𝑄

𝑃1 ∧ 𝑃2 ⊢ 𝑃𝑖
𝑅 ⊢ 𝑃 𝑅 ⊢ 𝑄
𝑅 ⊢ 𝑃 ∧𝑄 𝑃𝑖 ⊢ 𝑃1 ∨ 𝑃2

𝑃 ⊢ 𝑅 𝑄 ⊢ 𝑅
𝑃 ∨𝑄 ⊢ 𝑅

(𝑃→𝑄) ∧ 𝑃 ⊢ 𝑄 𝑃 ∧𝑄 ⊢ 𝑅
𝑃 ⊢ 𝑄→ 𝑅

(∀𝑥 . 𝑃𝑥) ⊢ 𝑃𝑎
∀𝑥 . (𝑄 ⊢ 𝑃𝑥)
𝑄 ⊢ ∀𝑥 . 𝑃𝑥

𝑃𝑎 ⊢ (∃𝑥 . 𝑃𝑥)
∀𝑥 . (𝑃𝑥 ⊢ 𝑄)
(∃𝑥 . 𝑃𝑥) ⊢ 𝑄

𝑃 ⊢ 𝑄
𝑃 ∗ 𝑅 ⊢ 𝑄 ∗ 𝑅 𝑃 ∗ emp ⊣⊢ 𝑃 𝑃 ∗𝑄 ⊣⊢ 𝑄 ∗ 𝑃 (𝑃 ∗𝑄) ∗ 𝑅 ⊣⊢ 𝑃 ∗ (𝑄 ∗ 𝑅)

(𝑃 −∗𝑄) ∗ 𝑃 ⊢ 𝑄 𝑃 ∗𝑄 ⊢ 𝑅
𝑃 ⊢ 𝑄 −∗ 𝑅

Concurrent Quantum Separation Logic for Fine-Grained Parallelism

Basic Hoare-triple proof rules.

𝑃 ′ ⊢ 𝑃
{
𝑃
}
𝑒
{
𝑣 . 𝑄𝑣

}
∀𝑣 . (𝑄𝑣 ⊢ 𝑄 ′𝑣){

𝑃 ′
}
𝑒
{
𝑣 . 𝑄 ′𝑣

} {
𝑃
}
𝑒
{
𝑣 . 𝑄𝑣

}{
𝑃 ∗ 𝑅

}
𝑒
{
𝑣 . 𝑄𝑣 ∗ 𝑅

}
{
⊥
}
𝑒
{
𝑣 . 𝑄𝑣

} ∀𝑥 .
{
𝑃𝑥

}
𝑒
{
𝑣 . 𝑄𝑣

}{
∃𝑥 . 𝑃𝑥

}
𝑒
{
𝑣 . 𝑄𝑣

}{
𝑃
}
𝑒
{
𝑣 . 𝑄𝑣

}
∀𝑣 .

{
𝑄𝑣

}
𝐾 [𝑣]

{
𝑣 ′. 𝑅𝑣′

}{
𝑃
}
𝐾 [𝑒]

{
𝑣 ′. 𝑅𝑣′

} {
𝑃
}
𝑒 [𝑣/𝑥]

{
𝑣 ′. 𝑄𝑣′

}{
𝑃
}
let 𝑥 = 𝑣 in 𝑒

{
𝑣 ′. 𝑄𝑣′

}{
𝑃
}
𝑒𝑏

{
𝑣 . 𝑄𝑣

}{
𝑃
}
if 𝑏 {𝑒1 } else {𝑒0 }

{
𝑣 . 𝑄𝑣

} {
𝑃
}
𝑒1

{
𝑏. 𝑄𝑏

} {
𝑄1

}
𝑒2

{
𝑃
}{

𝑃
}
while 𝑒1 {𝑒2 }

{
𝑣 . 𝑄0

}
Basic proof rules for concurrency.{

𝑃
}
𝑒
{
𝑣 . 𝑄𝑣

} {
𝑃 ′

}
𝑒′

{
𝑣 ′. 𝑄 ′

𝑣′
}{

𝑃 ∗ 𝑃 ′
}
𝑒 ∥ 𝑒′

{
(𝑣, 𝑣 ′) . 𝑄𝑣 ∗ 𝑄 ′𝑣′

} parallel

{
𝑃
}
𝑒
{
𝑣 . 𝑄𝑣

}{
𝑃
}
atomic {𝑒 }

{
𝑣 . 𝑄𝑣

} atomic

Rules for exactness.

emp : precise
𝑃,𝑄 : precise
𝑃 ∗𝑄 : precise

𝑃 : precise 𝑄 ⊢ 𝑃
𝑄 : precise

𝑞
𝑟↦→ |𝜓 ⟩ : precise [𝑞]𝑟 : precise ℓ

𝑟↦→ 𝑣 : precise

Rules for quantum and heap ownership exclusion.

emp : out 𝑎
𝑃,𝑄 : out 𝑎

𝑃 ∨𝑄, 𝑃 ∗𝑄 : out 𝑎
∀𝑥 . (𝑃𝑥 : out 𝑎)
(∃𝑥 . 𝑃𝑥) : out 𝑎

𝑃 : out 𝑎 𝑄 ⊢ 𝑃
𝑄 : out 𝑎

𝑞
𝑟↦→ |𝜓 ⟩ , [𝑞]𝑟 : out ℓ

𝑞 ∉ {𝑞′}
𝑞′

𝑟↦→ |𝜓 ⟩ : out 𝑞

𝑞 ≠ 𝑞′

[𝑞′]𝑟 : out 𝑞

ℓ
𝑟↦→ 𝑣 : out 𝑞

ℓ ≠ ℓ ′

ℓ ′
𝑟↦→ 𝑣 : out ℓ

Basic proof rules for quantum ownership.

(𝑞, 𝑞′) ↦→ |𝜓 ⟩ |𝜓 ′⟩ ⊣⊢ 𝑞 ↦→ |𝜓 ⟩ ∗ 𝑞′ ↦→ |𝜓 ′⟩ qptto-tensor

𝑞
𝑟+𝑟 ′↦→ |𝜓 ⟩ ⊣⊢ 𝑞 𝑟↦→ |𝜓 ⟩ ∗ 𝑞 𝑟 ′↦→ |𝜓 ⟩ 𝑞

𝑟↦→ |𝜓 ⟩ ⊢ (𝑞 are pairwise distinct) ∧ 𝑟 ≤ 1

{𝑞} ∩ {𝑞′} ≠ ∅

𝑞
𝑟↦→ |𝜓 ⟩ ∗ 𝑞′ 𝑟 ′↦→ |𝜓 ′⟩ ⊢ 𝑞 = 𝑞′ ∧ |𝜓 ⟩ = |𝜓 ′⟩

qptto-agree

(𝑞𝜎 (1) , 𝑞𝜎 (2) , . . . , 𝑞𝜎 (𝑛))
𝑟↦→ ⌜𝜎⌝ |𝜓 ⟩ ⊣⊢ (𝑞1, 𝑞2, . . . , 𝑞𝑛)

𝑟↦→ |𝜓 ⟩ qptto-permute

[𝑞]𝑟+𝑟 ′ ⊣⊢ [𝑞]𝑟 ∗ [𝑞]𝑟 ′ [𝑞]𝑟 ⊢ 𝑟 ≤ 1{
emp

}
qalloc

{
𝑞. 𝑞 ↦→ |0⟩ ∗ [𝑞]1

} {
𝑞 ↦→ |0⟩ ∗ [𝑞]1

}
qfree 𝑞

{
emp

}{
(𝑞, 𝑞′) ↦→ |𝜓 ⟩

}
𝑈 [𝑞]

{
(𝑞, 𝑞′) ↦→ (𝑈𝑞 ⊗ I𝑞′) |𝜓 ⟩

}

Yusuke Matsushita, Kengo Hirata, and Ryo Wakizaka

The rule qptto-tensor cannot be applied to fractional points-to tokens, because that would violate the agreement

rule qptto-agree, due to tensor decomposition |𝜑⟩ = |𝜓 ⟩ |𝜓 ′⟩ of a vector |𝜑⟩ not being unique. In the rule qptto-

permute, 𝜎 is a permutation (bijective map) over {1, 2, . . . , 𝑛} and ⌜𝜎⌝ denotes the permutation matrix over

(
C2

)⊗𝑛
mapping |𝑏1𝑏2 · · ·𝑏𝑛⟩ to

��𝑏𝜎 (1)𝑏𝜎 (2) · · ·𝑏𝜎 (𝑛) 〉 (where 𝑏𝑖 ∈ {0, 1}).
Proof rules for heap ownership.

ℓ
𝑟+𝑟 ′↦→ 𝑣 ⊣⊢ ℓ 𝑟↦→ 𝑣 ∗ ℓ 𝑟 ′↦→ 𝑣 ℓ

𝑟↦→ 𝑣 ⊢ 𝑟 ≤ 1{
emp

}
mkref 𝑣

{
ℓ . ℓ ↦→ 𝑣

} {
ℓ

𝑟↦→ 𝑣
}

!ℓ
{
𝑣 ′. 𝑣 = 𝑣 ′ ∧ ℓ 𝑟↦→ 𝑣

} {
ℓ ↦→ 𝑣

}
ℓ ← 𝑣 ′

{
ℓ ↦→ 𝑣 ′

}
Proof rules for quantum superposition.{

𝑞 ↦→ |𝜓 ⟩ ∗ 𝑃
}
𝑒
{
𝑞 ↦→ |𝜑⟩ ∗ 𝑄

} {
𝑞 ↦→ |𝜓 ′⟩ ∗ 𝑃

}
𝑒
{
𝑞 ↦→ |𝜑 ′⟩ ∗ 𝑄

}
𝑃,𝑄 : precise{

𝑞 ↦→ (𝛼 |𝜓 ⟩ + 𝛽 |𝜓 ′⟩) ∗ 𝑃
}
𝑒
{
𝑞 ↦→ (𝛼 |𝜑⟩ + 𝛽 |𝜑 ′⟩) ∗ 𝑄

}
𝑃,𝑄 : precise

qptto-lincomb

𝑃 : out 𝑞 𝑃,𝑄 : precise{
𝑞

𝑟↦→ |𝜓 ⟩ ∗ 𝑃
}
𝑒
{
𝑞

𝑟↦→ |𝜓 ⟩ ∗ 𝑄
} {

𝑞
𝑟↦→ |𝜓 ′⟩ ∗ 𝑃

}
𝑒
{
𝑞

𝑟↦→ |𝜓 ′⟩ ∗ 𝑄
}{

𝑞
𝑟↦→ (𝛼 |𝜓 ⟩ + 𝛽 |𝜓 ′⟩) ∗ 𝑃

}
𝑒
{
𝑞

𝑟↦→ (𝛼 |𝜓 ⟩ + 𝛽 |𝜓 ′⟩) ∗ 𝑄
} frqptto-lincomb

Proof rules for modifying fractional quantum points-to tokens.{
𝑞

𝑟↦→ |𝜓 ⟩ ∗ 𝑃
}
𝑒
{
𝑣 . 𝑞

𝑟↦→ |𝜓 ⟩ ∗ 𝑄𝑣

}
𝑃 : out 𝑞 𝑟 < 1{

𝑞
𝑟 ′↦→ |𝜓 ⟩ ∗ 𝑃

}
𝑒
{
𝑣 . 𝑞

𝑟 ′↦→ |𝜓 ⟩ ∗ 𝑄𝑣

}{
𝑞

𝑟↦→ |𝜓 ⟩ ∗ 𝑞′ 𝑟↦→ |𝜓 ′⟩ ∗ 𝑃
}
𝑒
{
𝑣 . 𝑞

𝑟↦→ |𝜓 ⟩ ∗ 𝑞′ 𝑟↦→ |𝜓 ′⟩ ∗ 𝑄𝑣

}
𝑃 : out 𝑞, 𝑞′{

(𝑞, 𝑞′) 𝑟↦→ |𝜓 ⟩ |𝜓 ′⟩ ∗ 𝑃
}
𝑒
{
𝑣 . (𝑞, 𝑞′) 𝑟↦→ |𝜓 ⟩ |𝜓 ′⟩ ∗ 𝑄𝑣

}{
(𝑞, 𝑞′) 𝑟↦→ |𝜓 ⟩ |𝜓 ′⟩ ∗ 𝑃

}
𝑒
{
𝑣 . (𝑞, 𝑞′) 𝑟↦→ |𝜓 ⟩ |𝜓 ′⟩ ∗ 𝑄𝑣

}
𝑃 : out 𝑞, 𝑞′{

𝑞
𝑟↦→ |𝜓 ⟩ ∗ 𝑞′ 𝑟↦→ |𝜓 ′⟩ ∗ 𝑃

}
𝑒
{
𝑣 . 𝑞

𝑟↦→ |𝜓 ⟩ ∗ 𝑞′ 𝑟↦→ |𝜓 ′⟩ ∗ 𝑄𝑣

}
Proof rules for promotion by atomicity.

𝑒 is atomic 𝑃 : out 𝑞
{
𝑞 ↦→ |𝜓 ⟩ ∗ [𝑞]1 ∗ 𝑃

}
𝑒
{
𝑣 . 𝑞 ↦→ |𝜓 ⟩ ∗ [𝑞]1 ∗ 𝑄𝑣

}{
𝑞

𝑟↦→ |𝜓 ⟩ ∗ 𝑃
}
𝑒
{
𝑣 . 𝑞

𝑟↦→ |𝜓 ⟩ ∗ 𝑄𝑣

} qptto-promote

𝑒 is atomic 𝑃 : out 𝑞 ∀ |𝜓 ⟩ .
{
𝑞 ↦→ |𝜓 ⟩ ∗ [𝑞]1 ∗ 𝑃

}
𝑒
{
𝑣 . 𝑞 ↦→ |𝜓 ⟩ ∗ [𝑞]1 ∗ 𝑄𝑣

}{
[𝑞]𝑟 ∗ 𝑃

}
𝑒
{
𝑣 . [𝑞]𝑟 ∗ 𝑄𝑣

} qtok-promote

𝑒 is atomic 𝑃 : out ℓ
{
ℓ ↦→ 𝑣 ∗ 𝑃

}
𝑒
{
𝑣 ′. ℓ ↦→ 𝑣 ∗ 𝑄𝑣′

}{
ℓ

𝑟↦→ 𝑣 ∗ 𝑃
}
𝑒
{
𝑣 ′. ℓ

𝑟↦→ 𝑣 ∗ 𝑄𝑣′
} hptto-promote

C Semantic Model of Our Separation Logic
Here we present the semantic model of our separation logic presented in § 4.

Heap PCM. The heap PCM (partial commutative monoid) Heap is defined in a standard way:

|Heap| ≜ Loc
fin
⇀ (0, 1] × Val 𝜀Heap ≜ ∅

𝐻̂ ·Heap 𝐻̂ ′ ≜ 𝜆 ℓ ∈ dom 𝐻̂ ∪ dom 𝐻̂ ′.


𝐻̂ [ℓ] ℓ ∉ dom 𝐻̂ ′

𝐻̂ ′ [ℓ] ℓ ∉ dom 𝐻̂

𝐻̂ [ℓ] · 𝐻̂ [ℓ ′] otherwise

Concurrent Quantum Separation Logic for Fine-Grained Parallelism

where (𝑞, 𝑣) · (𝑞′, 𝑣 ′) ≜

{
(𝑞 + 𝑞′, 𝑣) 𝑞 + 𝑞′ ≤ 1, 𝑣 = 𝑣 ′

undefined otherwise

The lifting ⌜𝐻⌝ ∈ |Heap| of a heap 𝐻 ∈ Heap into a heap PCM element is defined as follows:

⌜𝐻⌝ ≜ 𝜆 ℓ ∈ dom𝐻. (1, 𝐻 [ℓ])

Quantum memory PCM. The qubit token PCM Qtok is defined as follows:

|Qtok| ≜ Qname fin→ [0, 1] 𝜀Qtok ≜ 𝜆_. 0 𝑅 ·Qtok 𝑅′ ≜ 𝜆𝑞.

{
𝑅 𝑞 + 𝑅′ 𝑞 𝑅 𝑞 + 𝑅′ 𝑞 ≤ 1

undefined otherwise

Here, by
fin→, we mean a finite-support mapping. For any 𝑅 ∈ |Qtok|, the support supp𝑅 ≜ {𝑞 ∈ Qname | 𝑅 𝑞 ≠ 0}

is a finite set.

The quantum points-to token PCM Qptto is defined as follows:

|Qptto| ≜
∐

qs ∈ PowfinQname

(
C2

)⊗qs × ∐
qss ∈QnamePart qs

(0, 1)qss ×
∏

qs′ ∈qss

(
C2

)⊗qs′
where QnamePart qs ≜

{
{qs′} ∈ PowfinPowfinQname

�� qs, qs′ are pairwise disjoint }
𝜀Qptto ≜ (∅, 1,∅,∅,∅)

(qs, |𝜓 ⟩ , qss, 𝑅, 𝐹) ·Qptto (qs′, |𝜓 ′⟩ , qss′, 𝑅′, 𝐹 ′) ≜
normalQptto

(
qs ∪ qs′, |𝜓 ⟩ ⊗ |𝜓 ′⟩ ,

qss ∪ qss′, (𝜆qs+. 𝑅 qs+ + 𝑅′ qs+), 𝐹 ∪ 𝐹 ′
) qs, qs′, (qss ∪ qss′)’s elements are pairwise disjoint,

𝐹 |qss∩qss′ = 𝐹 ′ |qss∩qss′, ∀qs+. 𝑅 qs+ + 𝑅′ qs+ ≤ 1

undefined otherwise

where normalQptto
(
qs, |𝜓 ⟩ , qss, 𝑅, 𝐹

)
≜ let qss′ = {qs′ ∈ qss | 𝑅 qs′ = 1} in(

qs ∪ ⋃
qss′, |𝜓 ⟩ ⊗

⊗
qs′∈qss′ 𝐹 qs

′, qss \ qss′, 𝑅 |qss\qss′, 𝐹 |qss\qss′
)

Here we introduce the function normalQptto to normalize the state by clearing parts of the full fraction. In the

definition of ·Qptto, the application 𝑅 qs+ is defined as 0 if qs+ ∉ dom𝑅. We write ¤𝑀 for elements of |Qptto|.
The quantum memory PCM Qmem is defined as the product of the quantum points-to token PCM and the qubit

token PCM:

Qmem ≜ Qptto × Qtok

We write 𝑀̂ for elements of |Qmem|. The lifting ⌜𝑀⌝ ∈ |Qmem| of a quantum memory𝑀 ∈ Qmem into a quantum

memory PCM element is defined as follows:

⌜𝑀⌝ ≜
(
(qs, |𝜓 ⟩ ,∅,∅,∅), 𝜆𝑞. if 𝑞 ∈ qs then 1 else 0

)
Global state PCM. The global state PCM is the product of the heap PCM and quantum memory PCM:

Glob ≜ Qmem × Heap

We write 𝐺 for elements of |Glob|. The lifting ⌜𝐺⌝ ∈ |Glob| of a global state 𝐺 ∈ Glob into a global state PCM

element is defined as follows:

⌜(𝑀,𝐻)⌝ ≜
(
⌜𝑀⌝, ⌜𝐻⌝

)
Propositions. We interpret a proposition 𝑃 ∈ SLProp as a predicate over the global PCM J𝑃K : |Glob| → Prop as

follows:

J𝑝K _ ≜ 𝑝 J𝑃 ∧𝑄K𝐺 ≜ J𝑃K𝐺 ∧ J𝑄K𝐺 J𝑃 ∨𝑄K𝐺 ≜ J𝑃K𝐺 ∨ J𝑄K𝐺

J𝑃→𝑄K𝐺 ≜ J𝑃K𝐺→ J𝑄K𝐺 J∀𝑥 . 𝑃𝑥K𝐺 ≜ ∀𝑥 . J𝑃𝑥K𝐺 J∃𝑥 . 𝑃𝑥K𝐺 ≜ ∃𝑥 . J𝑃𝑥K𝐺

JempK𝐺 ≜ 𝐺 = 𝜀 J𝑃 ∗𝑄K𝐺 ≜ ∃𝐺1,𝐺2. 𝐺 = 𝐺1 ·𝐺2 ∧ J𝑃K𝐺1 ∧ J𝑄K𝐺2

Yusuke Matsushita, Kengo Hirata, and Ryo Wakizaka

J𝑃 −∗𝑄K𝐺 ≜ ∀𝐺 ′ s.t. 𝐺 ·𝐺 ′ ↓ . J𝑃K𝐺 ′→ J𝑄K (𝐺 ·𝐺 ′)

J𝑞
𝑟↦→ |𝜓 ⟩K ((¤𝑀,𝑅), 𝐻̂) ≜ 𝑅 = 𝜀 ∧ 𝐻̂ = 𝜀 ∧
(𝑞 are pairwise distinct) ∧ 𝑟 ≤ 1 ∧ ¤𝑀 = qptto𝑟

(
{𝑞}, ⌜𝑞⌝ |𝜓 ⟩

)
where qptto𝑟 (qs, |𝜓 ⟩) ≜

{
(qs, |𝜓 ⟩ ,∅,∅,∅) 𝑟 = 1(
∅, 1, {qs}, (𝜆_. 𝑟), (𝜆_. |𝜓 ⟩)

)
𝑟 < 1

J[𝑞]𝑟 K ((¤𝑀,𝑅), 𝐻̂) ≜ ¤𝑀 = 𝜀 ∧ 𝐻̂ = 𝜀 ∧ 𝑅 𝑞 = 𝑟 ∧ ∀𝑞′ ≠ 𝑞. 𝑅 𝑞′ = 0

Jℓ
𝑟↦→ 𝑣K (𝑀̂, 𝐻̂) ≜ 𝑀̂ = 𝜀 ∧ 𝐻̂ = {(ℓ, (𝑟, 𝑣))}

In the semantics of 𝑞
𝑟↦→ |𝜓 ⟩, we write ⌜𝑞⌝ for the linear map that maps |𝑏1𝑏2 · · ·𝑏𝑛⟩ to |{𝑞𝑖 ↦→ 𝑏𝑖 | 𝑖}⟩, under the

condition that 𝑞 = 𝑞1, 𝑞2, . . . , 𝑞𝑛 are pairwise distinct.

Basic judgments. The entailment judgment is interpreted as follows, as usual:

J𝑃 ⊢ 𝑄K ≜ ∀𝐺. J𝑃K𝐺→ J𝑄K𝐺

The exactness judgment is interpreted as follows:

J𝑃 : preciseK ≜ ∀𝐺 s.t. J𝑃K𝐺. ∀𝐺 ′ s.t. J𝑃K𝐺 ′. 𝐺 = 𝐺 ′

The ownership exclusion judgment is interpreted as follows:

J𝑃 : out 𝑞K ≜ ∀𝑀̂, 𝐻̂ . J𝑃K (𝑀̂, 𝐻̂)→ 𝑞 ∉ dom 𝑀̂ J𝑃 : out ℓK ≜ ∀𝑀̂, 𝐻̂ . J𝑃K (𝑀̂, 𝐻̂)→ ℓ ∉ dom 𝐻̂

Here, we define dom 𝑀̂ ⊆ Qname as follows:

dom
(
(qs, |𝜓 ⟩ , qss, 𝑅′, 𝐹), 𝑅

)
≜ qs ∪

⋃
qss ∪ supp𝑅

Hoare triple. The Hoare triple
{
𝑃
}
𝑒
{
𝑣 . 𝑄𝑣

}
is interpreted as follows:

J
{
𝑃
}
𝑒
{
𝑣 . 𝑄𝑣

}
K ≜ ∀𝐺. J𝑃K𝐺→ Hoare

(
𝑒, 𝐺, 𝜆𝑣 . J𝑄𝑣K

)
Here, the predicate Hoare : Exp × |Glob| × (Val → |Glob| → Prop) → Prop is coinductively defined as follows:

Hoare(𝑒,𝐺,𝛷) ≜𝜈

(
𝑒 ∈ Val ∧ 𝛷 𝑒 𝐺

)
∨ ∀𝐺, 𝐺+ s.t. ⌜𝐺⌝ = 𝐺 ·𝐺+.

red(𝑒,𝐺) ∧ ∀ (𝑒′,𝐺 ′) ← (𝑒,𝐺) . ∃𝐺 ′ s.t. ⌜𝐺 ′⌝ = 𝐺 ′ ·𝐺+. Hoare(𝑒′,𝐺 ′,𝛷)

	Abstract
	1 Introduction
	2 Target Quantum Language
	3 Motivating Example
	4 Our Quantum Separation Logic
	5 Verification of the Motivating Example
	6 Future Work
	References
	A Operational Semantics of the Target Quantum Language
	B Proof Rules of Our Separation Logic
	C Semantic Model of Our Separation Logic

