RustHorn: CHC-based
Verification for Rust Programs

ESOP 2020

Yusuke Matsushita Takeshi ITsukada®™ Naoki Kobayashi
University of Tokyo

* Now in Chiba University

Our Work: RustHorn

* A novel reduction from Rust programs to CHCs for automated verification

« Removes pointers by leveraging Rust’'s ownership guarantees:
a pointer pa — the pair of its current & final target values (a, a,)
Prophecy!
e Supports various features: recursive data types, reborrowing, etc.

 Proof of soundness and completeness

e Evaluation with benchmarks

CHC-based Automated Verification wiomer.z05 ..

Constrained Horn Clause

Verification Problem

CHC Satisfiability Problem

Satisfiable! mc91(n, r)

int mc91(int n) {
if (n > 100) return n - 10;
else return mc91(mc91l(n + 11)):

I3 Functionally Correct?
void test(int n) {
if (n <= 101) assert(mc91l(n) == 91);
}
mc9l(n,r) < n>100 A r=n-10
mc9l(n,r) < n <100 A mc9I(n+ 11,r) A mc91(r,r)

r=91 < n<101 A mc91(n,r)

r=91 v (n>100 A r=n—-10)

Automated CHC Solvers: Spacer [Komuravelli+ 2018], Holce [Champion+ 2018], ...

Challenge in Pointers

* Verification is often hard when the program has pointers

 Naive approach: Model the memory as an

— Easily INn the presence of dynamic memory allocation
bool jrec(intx pa) A jrec(pa, h,s,r,h',s") <= r=true A h'=h A s'=s
i.f (rand()) ret.urn true; jrec(pa,h,s,r,h',s") < jrec(s,h{s<b},s+ 1,r,h',s’)
int a = xpa; int b = rand(); A r = r & h[pa]l = h[pal
return jrec(&b) && *pa == a;

r =true <= jrec(pa,h,s,r,h’,s’) A pa<s

Satisfiable with —

jrec(pa,h,s,r,h',s") = (Vi<s.h[i] =h[i]) A -
Quantified invariant: a memory region is unchanged

}

void test(int a){assert(jrec(&a));}

RustHorn removes pointers for smooth verification!

Table of Contents

e Rustin a Nutshell

e Qur Method
e Evaluation

e Related Work

Rust In a Nutshell

@ https://www.rust-lang.org

* Low-level memory operations & Safety guarantees by the type system
 Ownership: Necessary for object update, not sharable

 Borrow: Temporary transfer of ownership to a new reference

let mut a: int = 1;

I | _ — I I I I

let pa: &mut int = &mut a;

Reference

xpa += 10;
print(a); // 11 O

Deadline

https://www.rust-lang.org

Example of Borrows

fn max(pa: &mnut int, pb: &mut int) —> &mut int A
if *xpa >= *xpb { pa } else { pb }

}

fn test(mut a: int, mut b: int) {

let pc = max(&mut a, &mut b);
*pc += 1,;

Deadline of the two borrows
assert!(a '= b):

Table of Contents

e Rust in a Nutshell

e Our Method

e FEvaluation

e Related Work

Verifying Rust Programs

* Motivation: Remove pointers in Rust programs for smooth verification

* Naive approach: Model each reference just as
— We after the borrow’s deadline

fn max(pa: &mnut int, pb: &mut int) —-> &mut int {
if xpa >= xpb { pa } else { pb }

}
fn test(mut a: int, mut b: int) {

let pc = max(&mut a, &mut b); *xpc += 1; assert!(a != b);
}

max(a,b,r) < a>b AN r=a
max(a,b,r) < a<b AN r=>b
7 #£77 &< max(a,b,c) N c'=c+1

Our Method

Key idea: Take the final target value a_ for each borrow
» When borrow a (a) to pa, prophesy a, and model pa as (a, a,)

» When release pa ({a,a.)), seta, = a

fn max(pa: &mut int, pb: &mut int) —-> &mut int {
if xpa >= xpb { pa } else { pb }

}
fn test(mut a: int, mut b: int) {

let pc = max(&mut a, &mut b); *xpc += 1; assert!(a != b);
}

.
max({a,a,),{b,b)),r) < a>b AN b,=b A r=<(a,a,)
max({a,a,),{b,b,),r) <= a<b AN a,=a N r=<(b,b,)

a, #b, < max(a,a,),{b,b),{c,c.)) N c,=c+1

10/18

Advanced Example — with a recursive data type

enum list { Cons(int, Box<list>), Nil }

fn pick(pla: &mut list) —> &mut int { match pla {
Cons(pa, pla2) => if rand() { pa } else { pick(pla2) }
Foh

fn test(mut la: list) {

let s = sum(&la); let pa = pick(&mut la); *xpa += 1;
assert! (sum(&la) == s + 1);

¥
)
pick({a :: la’,a, :: lal),r) < la.=1a" N r=(a,a,)

pick({a::la’,a,::la)),r) <= a,=a N pick({la,la),r)
sum(la,) = sum(la) + 1 <= pick({la,la,),{a,a,)) N a,=a+ 1

Simple solution! pick({la, la,),{a,a,)) = sum(la,) —sum(la) =a, —a

We successfully verified this automatically in our experiment

Correctness of Our Reduction

 We formalized (a core of) Rust and our reduction from Rust to CHCs
and proved soundness and completeness of our reduction

Soundness and Completeness Theorem

For any Rust function f (that does not input references),

the input-output relation of f < the least solution to f in CHCs

Proof: By constructing a bisimulation between Rust and CHC resolution,

modeling each prophecy a, as a logic variable

Table of Contents

e Rust in a Nutshell
e Qur Method
« Evaluation

e Related Work

ImplementatiOn & Experiment https://github.com/hopv/rust-horn

* Implemented a prototype Rust verifier that uses our method (RustHorn)
* Analyzes Rust's mid-level IR, supports various features

 Backend CHC solvers: Spacer [Komuravelli+ 2018] & Holce [Champion+ 2018]

e Evaluated RustHorn in comparison with SeaHorn [Gurfinkel+ 2015]
 SeaHorn: CHC-based C verifier, uses the array-based reduction

58 Benchmarks: Both in Rust and C, (a) 16 from SeaHorn’s tests,
(b) 42 featuring various use cases of borrowing

https://github.com/hopv/rust-horn

Overview of Experimental Results

e RustHorn succeeded In various benchmarks

From SeaHorn’s tests Featuring various use cases of borrowing

Recursive data types

Benchmark (a) RustHorn SeaHorn Benchmark (b) RustHorn SeaHorn Benchmark (b) RustHorn SeaHorn
simple-01 <0.1 <0.1 imax—base-safe <0.1 append-safe <0.1
simple-04 05 0.8 1max—base—-unsafe <0.1 <0.1 append—-unsafe 0.2 0.1
simp le-05 <0.1 <0.1 imax—-base3-safe <0.1 inc-all-safe <0.1
simple-06 0.1 imax—base3-unsafe <0.1 <0.1 inc-all-unsafe 0.3 <0.1
hhk2008 40.5 <0.1 imax-repeat-safe 0.1 inc-some-safe <0.1
unique-scalar <0.1 <0." imax—-repeat—-unsafe <0.1 <0.1 inc-some-unsafe 0.3 0.1
bmc-1-safe <0." <0.1 imax—-repeat3-safe 0.2 inc-some2-safe
bmc-1-unsafe <0.1 <0." imax—-repeat3—-unsafe <0.1 <0.1 inc-some2-unsafe 0.3 0.4
bmc—-2-safe 0.1 <0." ldec-base-safe <0.1 append-t-safe <0.1
bmc-2-unsafe <0.1 <0." ldec-base—-unsafe <0.1 <0.1 append-t-unsafe 0.3 0.1
bmc-3-safe <0.1 <0." ldec-base3-safe <0.1 inc-all-t-safe
bmc-3-unsafe <0.1 <0." ldec-base3—-unsafe <0.1 <0.1 inc-all-t-unsafe 0.1 <0.1
diamond-1-safe <0.1 <0." ldec—-exact-safe <0.1 inc-some—-t-safe
diamond-1-unsafe <0.1 <0." ldec—-exact—-unsafe <0.1 <0.1 inc-some—-t—-unsafe 0.3 0.1
diamond-2-safe <0.1 <0." ldec—-exact3-safe <0.1 inc-some2-t-safe
diamond-2-unsafe <0.1 <0." ldec—-exact3—-unsafe <0.1 <0.1 inc-some2-t-unsafe 0.4 0.1

Table of Contents

e Rust in a Nutshell
e Qur Method

e FEvaluation

e Related Work

Related Work

« CHC-based automated verification of pointer programs

o SeaHorn [Gurfinkel+ 2015] (C/C++), JayHorn [Kahsai+ 2016] (Java):
do not use ownership, easily raise false alarms

 ConSORT [Toman+ 2020] (Java): uses a fractional ownership model,
requires extra annotations on ownership
* Verification of Rust programs leveraging Rust’s ownership guarantees

* Prusti [Astrauskas+ 2018] (separation logic), Electrolysis [Ulrich 2016] (purely
functional language): do not support some reference operations
(e.g., split of references)

Summary

 RustHorn: CHC-based automated verification of Rust programs

* | everages Rust’'s ownership guarantees:
a reference pa — the pair of its current & final target values (a, a,)

* Supports various features, including recursive data types

* Correctness proof & Experimental evaluation

* Ongoing work: Prove in Coq, support unsafe code (RustHornBelt)

