- =

Nola: Laterfree ghost state
for verifying termination in Iris

Yusuke Matsushita Kyoto University
Joint work w/ Takeshi Tsukada Chiba University

June 2, 2025 — Iris Workshop 2025 @ Inria, Paris

Brief self-infroduction

+ Yusuke Matsushita 2T %54

» Software scientist, loves RUsSt kb

- Assistant Prof. at KyotoU —

_

> past work:
> . RustHorn
o S ‘ i S Rust’s borrows made
en| OI" t e S|S ’ ‘e ’s .
, , ure’ by prophecies
F;L‘c“{;é:i’.'“Jl?f?.bfii{n:‘%gu:;%1%‘3;32‘:2’:?.'m ES O P 20 & TO P L AS 2 I p y p P

RustHornBelt Internship at Derek’s
Master’s thesis "2 group, Extends RustBelt
PLDI '22

NEVADA
San Francisco .
0
CALIFORNIA ™.

Los Aggeles . ARIZONA

oﬁm Plego

T .

POPL 2020 @ New Orleans, a.k.a. NOLA

WYOMING

NEBRASKA

United“States

COLORADO KANSAS

| NEW MEXICO !

pMIiILIGAN

'

NEW YORK

>l
PENN = (5

OHIO | |

INDIANA - &
! i .~~~ Washington

= s B e WES T & ' N
VIRGINIA

= VIRGINIA

IMISSOURI

VPR Y . o v oy - CAROLINA
ARKANSAS' ; j

MISSISSIPPI

ALABAMA
{GEORGI

N0 SOUTH
CAROLINA

FLORIDA

Gulf of

e .
Mexico Miami

My latest work, Nola Ph.D. dissertation '23 & PLDI 25

4+ Later-free shared mutable state in separation logic

> Higher-order ghost state, but clears the notorious later >

\

- Great for termination & liveness verification Ir *S

- Refines Iris’s invariants |> P| & RustBelt’s borrows & =P

> Key idea: Custom syntax P € Fml for SL formulas , later

- [Extensible & Semantic SL props under later w
» Case study: RustHalt, revised RustHornBelt
» Fully mechanized as a library of Iris () sithub.com/hopv/nola

% On my GitHub pages

https://github.com/hopv/nola
https://shiatsumat.github.io/papers/pldi2025-nola.pdf

Why Nola?

Termination verification should be easy

4+ Meta-logic induction & composition should work

» And that’s the case for traditional separation logic

Example | fn decrloop(r) { if *xr > 0 { *r = xr — 1; decrloop(r) } }

Total correctness Vn € N. [r — n] decrloop(r) [A_. r O]

Proof. Induction in the meta-logic (e.g.,Rocq) Casen =0 « Casen =1
— Casen=2+¢ -

Example 2 [r — v] xr = ndnat; decrloop(r) [A_. r— O]

Unbounded termination

Proof. Composition of the former and the rule [T] ndnat [AU. U € N]

Question

What about
shared mutable state?

Traditional SL: Mutable state is not sharable

T = =t

Invariants: Shared mutable state

4+ Invariant | P|: Roughly, the situation P always holds

llllllllllllllllllllllllllll

DY 4
*

)

Mutable state shared across threads etc. : Logical state that :
: depends on 5

*

- Key of Iris [Jung+ ’15], Typical higher-order ghost state -.. SL assertions

*
lllllllllllllllllllllllllllll

>

A

Shared mutableref r: refbool = |r = true V r — false

r: ref bool r - ref bool [T] ref true [Ar. r — true V r — false]

| r — true V |}
{ r— false

[r — true V r — false] xr = false [T]

[r — true V r — false] xr [Av. vV = true V v :false]

A

Even nested ref! r: ref (refbool) = |ds.r+— s * (s:ref bool)

Sad news: Naive later-free invariant is unsound

4+ Naive rule causes unsound “infinite loops’ in logic
Naive access rule [P % Q] ae [Av. P EPV] g
{} [P * Q] ae [q/]

Paradox Landin’s knot: Loop by a shared mutable ref of a closure

I -.. | let r = reffn () {} 1n
. Call » +€
: lana =
TN T w2 OGN0 GO

With the naive access rule, we can wrongly prove [] landin []

L

Proof. Via an invariant with a Hoare triple

forefx [T]FO [T]

Existing approach: Later

4+ Weakened invariant |~ P| : The situation > P always holds

» Later modality > : “Holds one index later” [Nakano ’00]

- For soundness, Notorious obstacle of verification in Iris

[P % Q] ae [Av. P x lI/v] [I>P % Q] ae [Av. > P % lI/v]
[P *Q]ae[q/] [1>P *Q]ae[q/]
Naive but unsound Sound but weakened

e

[ri's

10

Problem about later

+ Laters > are in the way

» Very basic SL props like £ — v are timeless > P = P (up to ¢)

» But many SL props, including invariants |~ P|, are not timeless

» Later > blocks access to esp. inside of nested refs

r: ref (refbool) = |»> ds. r+—s * (s: refbool) m

| r: ref (refbool) | *xr | As. »(s: ref bool) | /1]

Blocles access!

11

Existing workaround & Its limitation

4+ Step-indexing: Tie program steps with laters >

andd {P} e {q/} Wiait for one program step,
{[> p} p {gj} then you can strip off one later

4 Does not work well in termination verification
e [P]e[¥]

Paradox Step-indexing on total Hoare triple
[~ Ple]¥]

lets you wrongly prove [T] loop [J_] under loop < loop

Proof. By L6b induction =1 ,ﬁ
p

12

Recent approaches to termination & liveness

|. Give up invariants on non-timeless propositions

» Many recent SLs for advanced liveness properties:
Simuliris [Gaher+ "22], CCR [Song+ 23], Fairness Logic [Lee+ 23], etc.

M s

Used by, e.g,,
RustBelt’s lifetime logic

2. Finitely bound program steps [Mevel+ ’19]

» Bounded termination $n, not genuine liveness

3. Use transfinite step-indexing [Spies+ '21]

> Still need to transfinitely bound program steps $«

» Lose good properties of later >(P+Q) & »P x> Q

13

Goal: Natural & modular liveness verification

4+ Verify liveness naturally for shared mutable state

> Want to use natural meta=-logic induction

- Strong composability of proof, No bounding
» Sound later-free higher-order ghost state m

- Invariants over closures etc. should be Q
handled with care, due to Landin’s knot paradox

- But nested invariants should not suffer from the later

Is that even possible?

14

Solution, Nola

Solution, Nola Ph.D. dissertation *23 & PLDI 25

4+ Later-free shared mutable state in separation logic

> Higher-order ghost state, but clears the notorious later >

- Great for termination & liveness verification Ir *S

\

- Refines Iris’s invariants |> P| & RustBelt’s borrows & =P

> Key idea: Custom syntax P € Fml for SL formulas , later

- [Extensible & Semantic SL props under later w
» Case study: RustHalt, revised RustHornBelt
» Fully mechanized as a library of Iris () sithub.com/hopv/nola

% On my GitHub pages

16

https://github.com/hopv/nola
https://shiatsumat.github.io/papers/pldi2025-nola.pdf

Key idea: Custom syntax for SL formulas

4+ Custom syntax Fml & semantics | | for SL formulas

» Intuitively, | |: Fml — iProp is well-behaved substitute for >

- So many SL props become “timeless” under well-designed | |

e
- —a

[P« Qf ae [Av. P = W]
[P % Q] ae [llf]

w [P * Q] ae [Av. 5P x Wy|
Ir(s [1>P % Q] ae [EP]

] Winv || |

[|[P]] % Q] ae [Av. [P]| = Vv P e Fml

[P % Q] ae [q/] Winv] | ||: Fml — iProp

17

Power of SL formulas

4+ SL formulas can be really expressive & semantic
Non-monotone [P -*Q] £ [P] = [Q]
E.g., Fml>P,Q :=,, P*Q |P-*xQ | PVQ | Vad | 34 &
| @ (p€Prop) | r=>v | (P e, Fml) | 5P (P € »iProp)
Any semantic SL props under later!

>P = & next P
>nextP = > P

No later!
+ Productivity

[5P] 2 &P

4 SL formulas can even be extensible

> By parameterizing over the constructors, just like iProp’s 2

18

Later-free access to nested refs

+ With Nola, we can go inside nested refs w/o later!

» Allows natural termination verification

r: ref (refbool) = |3s.r—=s *x (s: refbool)

[|r: ref (ref bool) |] 38 [;[5. [s: ref bool]]Winv[[]]

Later-free access!

19

Verification example: Infinite list

4+ Termination of iteration can be naturally verified

listér = * listdr = [pPr| x
&= —n | Lr(s
[|[115t é r]]] *(r+1) [Ilistdﬁ r] *(r+1)
| As. ﬂlistés]]]wmv[[]] | As. & llist @ s |
| . fn iterc(f,c,r) { 1f *c >0 {
feration f(r); *c = x¢c—-1; 1iterc(f,c,*(r+1)) } }
Winv []
. . Vr. [|er|| f(r) | T
Termination! | | Fr [T T
By meta-logic induction [ﬂliSt $r| = C'_”?] iterc(f,c,r) [CHO]

20

Custom view shifts & Hoare triples

+ Enable customizing the world satisfaction

> Or the “mother invariant” for higher-order ghost state

P=2VQ 2 PxW= QW

W
World satisfactions P=" 0 [P|e |7
can be combined p =>W+W" (O [P] e [g/]W*W'
P=>Wp [Plelw]” (Ple[w]” vv.wvaV vy
W W
[P|e[¥] |[P|e[¥]

2]

Model of Nola’s invariant

+ Nola’s invariant generalizes Iris’s invariant

\'4

> Fml generalizes » iProp, [] generalizes > : » iProp — iProp

R
gc —a Iris
INnv Fml % AvutH (N M AG Fml) tINv. £ AutH (N M A (» iProp))
A — T 9 YInv A — SN € 5 § ST
P| £ diu o1« agP] >P| = di. io|1 < ag(nextP)]:
Winv[] 2 3I:N fm Wliny 2 3[. N2, iProp.

T T YInv R — C AT VLNV L2 R g
eag I x 3k (([14] * B3,) v E) eagli "« 3k ((#11[B]) Vv [E],)
T J tedomr | T redom I

22

Soundness & Expressivity

+ Well-definedness is the key to soundness

> Fml’s reference to iProp should be contractive
- For well-definedness of iProp = (INvFml X ---) — Prop

> | | should be well-defined & non-expansive

- Landin’s knot paradox does nhot occur
[[T1elT1] 2, [T]e[T]V™"!

< Invalid circular ref to || |

+ Allows flexible construction for extra expressivity

» E.g,Stratification [|;: fml; — iProp [[Plele]], =
Winv [o
[[P]1] e | [2]:]

23

Rust-style borrows

+ Later-free version of RustBelt’s lifetime logic [Jung+ ’18]

» Advanced higher-order ghost state, but analogous to invariants

dn. 1—n 1:1int

let mut 1 = 0; S ~
let b = &mut 1; A (An 1) o & 3n 1)
R e
, I v (0] 1-4 7S’q(EIn.1I%n)
print(l); dn. l—n 1:int T dn. 1 — n

[p] =2Wborll g*p « AP fo % A*P Wborll [p]

& P x [a]g 2Vl pop « [P] ®;P « [P] 2Vl &P « [o],

24

Last challenge: Semantic alteration of syntax

4+ Want to prove subtyping on shared mutable refs

» Need semantic alteration of SL formulas for invariants

<y U<1 So need I[Pﬂ(:)ﬂaﬂ

Goal ——————— o
oaQ refT < ref U something like ﬂﬂ PN [[@ﬂ

+ Semantic equivalence of syntax SL formulas?

[(A)] = [P [(P)] %> 3@ st [Pl =[] [Q

Not semantic! Invalid circular self-ref

25

Solution: Magic derivability

+ Fixpoint-like semantic construction of derivability

» Key: Parameterize the semantics over derivability candidates

Judg>J == P<>({ (P)ls = 3@ st.6(P<Q).|[Qq

[P<=Q]; = [Plse [Q]ls []":(udg— iProp) — (Judg — iProp)

derJ = [J]7.. V § € Deriv. |Plls ©

Qs

der € Deriv V& € Deriv. [[P)]s ©

Q)]s

Model Deriv is the closure of []|* & conjunction, If []*is monotone,
der is the smallest element of Deriv der is exactly the fixpoint

26

Case study: RustHalt

+ Semantic foundation for verifying Rust termination

» Refined RustHornBelt [M+ '22] w/ Nola’s invariants & borrows

- Each Rust type is modeled as a parameterized SL formula Fml

» Semantic typing / logical relation that enjoys extensibility

Example fn iter(f,1) { match 1 { Nil = (), Cons(a,l’) = { f(a); iter(f,*1") } } }
Va. a: & mut T + f(a) A
1: & mut List<T> + iter(f,1) H

.~ Apost, [(a,a’)]. a’ = fa - post|]

.~ Apost, [(LI")]. I =map fl - post |]

A

Vpost, t, q. [Eé. <AJT. pre (post 1) (&n)> * [v]lg * [£] = [T (a, t)]
e | Ar. 3b. (Arr. postm (b)) * [v]q * [t] * ﬂr']](];, /)]th[[]]

[T, e4r.T" ~ pre|

27

Recent application: Lilo Lee+ OOPSLA "25

4 Fair liveness verification for shared mutable state

> Extends fairness logic [Lee+ '23] with Nola-style invariants

- Stratification is used for higher-order features

Example

while (1) { V; X = 1; while (1) { V; X = 2;
do { V;a = X; } while (a =1); VY, print(a); } do { V; b = X; } while (b = 2); V; print(b); }

refines
while (1) { V; print(2); } || while (1) { ; print(1); }

under scheduler fairness

28

Takeaway: Syntax vs. Semantics

+ Syntactic formulas & Semantic proof system

» Unlike the syntax of logic, where the proof system is also syntactic

+ Syntax is great in flexibility P -

> In Nola, syntax removes the need for the later modality P

» Syntax can be designed for various use cases (e.g., strafication)

4+ Syntax can be quite extensible & semantic

» Semantic propositions can be embedded in formulas under later

29

Summary of Nola Ph.D. dissertation "23 & PLDI "25

4+ Later-free shared mutable state in separation logic

> Higher-order ghost state, but clears the notorious later >

- Great for termination & liveness verification Ir *S

\

- Refines Iris’s invariants |> P| & RustBelt’s borrows & =P

> Key idea: Custom syntax P € Fml for SL formulas , later

- [Extensible & Semantic SL props under later w
» Case study: RustHalt, revised RustHornBelt
» Fully mechanized as a library of Iris () sithub.com/hopv/nola

% On my GitHub pages

30

https://github.com/hopv/nola
https://shiatsumat.github.io/papers/pldi2025-nola.pdf

