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Overview of Our Work

We propose concurrent quantum separation logic for
modularly verifying quantum programs with fine-grained parallelism

• Compared to existing quantum SLs [Zhou+ LICS’21] [Le+ POPL’22],
our logic is the first to support concurrency and the sharing of 
quantum resources, and can verify non-trivial programs
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Embedding via atomicityShared variables (𝑥, 𝑦)
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Outline

• Motivation: Parallelizing Quantum Programs

• Our Work: Concurrent QSL for Fine-Grained Parallelism

• Extension to Probabilistic Reasoning & Conclusion
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Parallelizing Quantum Programs

• Parallelizing quantum programs can reduce execution costs
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||

Parallel execution



Parallelizing Quantum Programs

• Parallelizing quantum programs can reduce execution costs

• Other candidates
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;

Clever scheduling

;

Patterns of parallelization results   =   Possible execution traces



Correctness of a parallel program ≈ Uniqueness of the output

Verifying the Correctness of Parallelization
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= =
? ?

Parallelization is correct?   =   Concurrent program is correct?



1. Parallelization allows exponentially many execution traces!
⇒ Need a modular method for parallel quantum programs

2. Concurrent programs may share qubits in non-trivial way

3. Support circuit embedding in non-interfered way

What is Challenge?
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2. Shared variables (𝑥, 𝑦)

⋮⋮

3. Circuit Embedding



Concurrent Quantum Separation Logic for
Fine-Grained Parallelism

1. Support parallel execution of quantum processes

2. Support shared quantum variables

• Even when there are apparent write-write races

3. Support atomic expressions

• For non-interfered embedding of quantum circuits
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Our Work:

∣∣

3. Embedding via atomicity

1.

2. Shared variables (𝑥, 𝑦)

≡



Outline

• Motivation: Parallelizing Quantum Programs

• Our Work: Concurrent QSL for Fine-Grained Parallelism

• Extension to Probabilistic Reasoning & Conclusion
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A Simple Example
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||
𝐶0𝑋 𝑥, 𝑦 || 𝐶1𝐻 𝑥, 𝑦

Our Goal:  Prove this

(𝑥, 𝑦) ↦ 𝛼 0 |𝜙0⟩ + 𝛽|1⟩|𝜙1⟩) ∗ [𝑦]
𝐶0𝑋 𝑥, 𝑦 || 𝐶1𝐻 𝑥, 𝑦

𝑥, 𝑦 ↦ 𝛼 0 ⊗ 𝑋 𝜙0 + 𝛽 1 ⊗ 𝐻 𝜙1 ) ∗ [𝑦]

• Quantum points-to token ҧ𝑥 ↦ 𝜓 : the state vector of ҧ𝑥 is 𝜓

• Separation ∗ means disentangled qubit states:
ҧ𝑥 ↦ 𝜓 ∗ ത𝑦 ↦ 𝜙 ≡ ഥ𝑥, ത𝑦 ↦ 𝜓 ⊗ 𝜙

• Qubit token 𝑥 (new!): Qubit 𝑥 is alive, but its state is unknown

Postcondition

Precondition



Proof for 𝑪𝟎𝑿 𝒙, 𝒚 || 𝑪𝟏𝑯 𝒙, 𝒚

𝑥, 𝑦 ↦ 𝛼 0 𝜙0 + 𝛽 1 𝜙1 ∗ 𝑦

𝑥 ↦ 0 ∗ 𝑦 ↦ 𝜙0 ∗ 𝑦

𝑥 ↦ 1 ∗ 𝑦 ↦ 𝜙1 ∗ 𝑦

𝑦 ↦ 𝜙0 ∗ 𝑦 𝑥↦|0⟩

𝑦 ↦ 𝜙1 ∗ 𝑦 𝑥↦|1⟩

𝐶0𝑋 𝑥, 𝑦 || 𝐶1𝐻 𝑥, 𝑦

𝑦 ↦ 𝑋 𝜙0 ∗ 𝑦 𝑥↦|0⟩

𝑦 ↦ 𝐻 𝜙1 ∗ 𝑦 𝑥↦|1⟩

𝑥 ↦ 0 ∗ 𝑦 ↦ 𝑋 𝜙0 ∗ 𝑦

𝑥 ↦ 1 ∗ 𝑦 ↦ 𝐻 𝜙1 ∗ 𝑦

𝑥, 𝑦 ↦ 𝛼 0 ⊗ 𝑋 𝜙0 + 𝛽 1 ⊗ 𝐻 𝜙1 ∗ 𝑦
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Quantum resources (propositions) can be
distributed to processes by separation *

⇒ How?

Remark:
• 𝑦 ↦ 𝜓 ∗ 𝑦 ↦ 𝜓 is not allowed
• 𝑥 and 𝑦 may not be separable

∗



Our Key Observation

• Both processes can write to y simultaneously due to superposition
• If 𝑥 ↦ 𝛼 0 + 𝛽 1 for 𝛼, 𝛽 ≠ 0, then both 𝐶0𝑋 and 𝐶1𝐻 update 𝑦

• How to distribute “write permission” on 𝑦 to both processes?

• Our idea: Quantum case analysis over the bases of a qubit 𝑥

• After the case analysis, only one process writes to the qubit
⇒ The apparent write-write race is eliminated!
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𝐶0𝑋 𝑥, 𝑦 || 𝐶1𝐻 𝑥, 𝑦

𝑥 ↦ 0 𝑥 ↦ 1

𝐶0𝑋 𝑥, 𝑦 || 𝐶1𝐻 𝑥, 𝑦 𝐶0𝑋 𝑥, 𝑦 || 𝐶1𝐻 𝑥, 𝑦

Write permission
is not required



Linear Combination Rule
This idea can be formalized as linear combination of Hoare triples
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ҧ𝑥 ↦ 𝜓 ∗ 𝑃 𝑒 ҧ𝑥 ↦ 𝜙 ∗ 𝑄

ҧ𝑥 ↦ 𝜓′ ∗ 𝑃 𝑒 ҧ𝑥 ↦ 𝜙′ ∗ 𝑄

ҧ𝑥 ↦ 𝛼 𝜓 + 𝛽 𝜓′ ∗ 𝑃 𝑒 ҧ𝑥 ↦ 𝛼 𝜙 + 𝛽 𝜙′ ∗ 𝑄

Now Our Subgoals:

(𝑥, 𝑦) ↦ 0 𝜙0 ∗ 𝑦 𝐶0𝑋 𝑥, 𝑦 || 𝐶1𝐻 𝑥, 𝑦 𝑥, 𝑦 ↦ 0 ⊗ 𝑋 𝜙0 ∗ 𝑦

(𝑥, 𝑦) ↦ 1 𝜙1 ∗ 𝑦 𝐶0𝑋 𝑥, 𝑦 || 𝐶1𝐻 𝑥, 𝑦 𝑥, 𝑦 ↦ 1 ⊗ 𝐻 𝜙1 ∗ 𝑦



Proof for 𝑪𝟎𝑿 𝒙, 𝒚 || 𝑪𝟏𝑯 𝒙, 𝒚

𝑥, 𝑦 ↦ 𝛼 0 𝜙0 + 𝛽 1 𝜙1 ∗ 𝑦

𝑥 ↦ 0 ∗ 𝑦 ↦ 𝜙0 ∗ 𝑦

𝑥 ↦ 1 ∗ 𝑦 ↦ 𝜙1 ∗ 𝑦

𝑦 ↦ 𝜙0 ∗ 𝑦 𝑥↦|0⟩

𝑦 ↦ 𝜙1 ∗ 𝑦 𝑥↦|1⟩

𝐶0𝑋 𝑥, 𝑦 || 𝐶1𝐻 𝑥, 𝑦

𝑦 ↦ 𝑋 𝜙0 ∗ 𝑦 𝑥↦|0⟩

𝑦 ↦ 𝐻 𝜙1 ∗ 𝑦 𝑥↦|1⟩

𝑥 ↦ 0 ∗ 𝑦 ↦ 𝑋 𝜙0 ∗ 𝑦

𝑥 ↦ 1 ∗ 𝑦 ↦ 𝐻 𝜙1 ∗ 𝑦

𝑥, 𝑦 ↦ 𝛼 0 ⊗ 𝑋 𝜙0 + 𝛽 1 ⊗ 𝐻 𝜙1 ∗ 𝑦
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𝑃1 𝑃2 𝑒 𝑄1 𝑄2 ≝
𝑃1 𝑒 𝑄1 ∧ 𝑃2 𝑒 𝑄2

∗

• Give 𝑦 ↦ 𝜙𝑖 to 𝑖-th process

• 𝑥 is required by both processes
as “read-only” qubits

Remark:

• 𝑥 ↦ 𝜓 ∗ 𝑥 ↦ 𝜓 is not allowed

𝑦 ↦ 𝜙0 [𝑦]



Resource Sharing via Invariants

Share 𝑥 ↦ 0
via the invariant
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𝑒 is atomic 𝑃 ∗ 𝐼 𝑒 𝑄 ∗ 𝐼

𝑃 𝑒 𝑄 𝐼

𝑃 𝑒 𝑄 𝐼∗𝐽

𝑃 ∗ 𝐼 𝑒 𝑄 ∗ 𝐼 𝐽

(𝑥, 𝑦) ↦ 0 𝜙0 ∗ 𝑦 𝐶0𝑋 𝑥, 𝑦 || 𝐶1𝐻 𝑥, 𝑦 (𝑥, 𝑦) ↦ 0 ⊗ 𝑋 𝜙0 ∗ 𝑦

𝑦 ↦ 𝜙0 𝐶0𝑋 𝑥, 𝑦 𝑦 ↦ 𝑋 𝜙0
𝒙↦ 𝟎 𝑦 𝐶1𝑋 𝑥, 𝑦 𝑦 𝒙↦ 𝟎

𝑦 ↦ 𝜙0 ∗ 𝑦 𝐶0𝑋 𝑥, 𝑦 || 𝐶1𝐻 𝑥, 𝑦 𝑦 ↦ 𝑋 𝜙0 ∗ 𝑦 𝒙↦ 𝟎

𝑥 ↦ 0 ∗ 𝑦 ↦ 𝜙0 𝐶0𝑋 𝑥, 𝑦 𝑥 ↦ 0 ∗ 𝑦 ↦ 𝑋 𝜙0 𝑥 ↦ 0 ∗ 𝑦 𝐶1𝑋 𝑥, 𝑦 𝑥 ↦ 0 ∗ 𝑦

𝑃 𝑒 𝑄 𝐼 𝑃′ 𝑒′ 𝑄′ 𝐼

𝑃 ∗ 𝑃′ 𝑒 ∣∣ 𝑒′ 𝑄 ∗ 𝑄′ 𝐼



Anti-Frame Rule by Atomicity

• Qubit token 𝑥 allows atomic temporary writes to 𝑥
• e.g.,  𝐼 𝑥 ,  atomic 𝑋 𝑥 ; … 𝑥 is unchanged … ; 𝑋 𝑥

• Other processes can freely access 𝑥 with the points-to token 𝑥 ↦ 𝜓
• Technically, qubit tokens can be used for dirty qubits

16

𝑒 is atomic 𝑃: out 𝑥 𝑄: precise

∀ 𝜓 . 𝑥 ↦ 𝜓 ∗ 𝑥 ∗ 𝑃 𝑒 𝑥 ↦ 𝜓 ∗ 𝑥 ∗ 𝑄

𝑥 ∗ 𝑃 𝑒 𝑥 ∗ 𝑄

𝑥 ↦ 0 ∗ 𝑦 𝐶1𝑋 𝑥, 𝑦 𝑥 ↦ 0 ∗ 𝑦

𝑃 𝑒 𝑄

𝑃 ∗ 𝑅 𝑒 𝑄 ∗ 𝑅

Cf. Frame rule



Complete Proof for 𝑪𝟎𝑿 𝒙, 𝒚 || 𝑪𝟏𝑯 𝒙, 𝒚

𝑥, 𝑦 ↦ 𝛼 0 𝜙0 + 𝛽 1 𝜙1 ∗ 𝑦

𝑥 ↦ 0 ∗ 𝑦 ↦ 𝜙0 ∗ 𝑦

𝑥 ↦ 1 ∗ 𝑦 ↦ 𝜙1 ∗ 𝑦

𝑦 ↦ 𝜙0 ∗ 𝑦 𝑥↦|0⟩

𝑦 ↦ 𝜙1 ∗ 𝑦 𝑥↦|1⟩

𝐶0𝑋 𝑥, 𝑦 || 𝐶1𝐻 𝑥, 𝑦

𝑦 ↦ 𝑋 𝜙0 ∗ 𝑦 𝑥↦|0⟩

𝑦 ↦ 𝐻 𝜙1 ∗ 𝑦 𝑥↦|1⟩

𝑥 ↦ 0 ∗ 𝑦 ↦ 𝑋 𝜙0 ∗ 𝑦

𝑥 ↦ 1 ∗ 𝑦 ↦ 𝐻 𝜙1 ∗ 𝑦

𝑥, 𝑦 ↦ 𝛼 0 ⊗ 𝑋 𝜙0 + 𝛽 1 ⊗ 𝐻 𝜙1 ∗ 𝑦
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𝑃1 𝑃2 𝑒 𝑄1 𝑄2 ≝
𝑃1 𝑒 𝑄1 ∧ 𝑃2 𝑒 𝑄2

𝑦 ↦ 𝜙0
𝑥↦ 0 𝑦 𝑥↦ 1

𝑦 ↦ 𝜙0 ∗ 𝑥 ↦ 0 } { 𝑦 ∗ 𝑥 ↦ 1 }
𝐶0𝑋 𝑥, 𝑦

𝑦 ↦ 𝑋 𝜙0 ∗ 𝑥 ↦ 0 𝑦 ∗ 𝑥 ↦ 1

𝑦 ↦ 𝑋 𝜙0
𝑥↦ 0 𝑦 𝑥↦ 1

𝑦 𝑥↦ 0 𝑦 ↦ 𝜙1
𝑥↦ 1

𝑦 𝑦 ↦ 𝜙1 ∗ 𝑥 ↦ 1
𝐶1𝐻 𝑥, 𝑦
𝑦 ∗ 𝑥 ↦ 0 𝑦 ↦ 𝐻 𝜙1 ∗ 𝑥 ↦ 1

𝑦 𝑥↦ 0 𝑦 ↦ 𝐻 𝜙1
𝑥↦ 1



𝑥, 𝑦, 𝑧 ↦ 𝛼 0 𝜓𝑦𝑧 + 𝛽|1⟩ 𝜙𝑦𝑧 ∗ 𝑦 ∗ 𝑧 ∗ ⋯

𝐶𝐶𝑌 𝑥, 𝑧, 𝑦 ; 𝑈 𝑧 ; 𝐶𝐶𝑍 𝑥, 𝑧, 𝑦 || atomic 𝑋 𝑥 ; 𝐶𝐻 𝑥, 𝑦 ; 𝑋 𝑥

𝑥, 𝑦, 𝑧 ↦ 𝛼 0 ⊗ 𝐻𝑦𝑈𝑧 𝜓𝑦𝑧 + 𝛽 1 ⊗ 𝐶𝑌𝑧𝑦𝑈𝑧𝐶𝑍𝑧𝑦 𝜙𝑦𝑧 ∗ ⋯

More Complex Example
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∣∣ ≡

𝑥 ↦ 0 ∗ 𝑦 ∗ 𝑧 𝑥 ↦ 0 ∗ 𝑦, 𝑧 ↦ 𝜓𝑦𝑧

Invariant Invariant
||

𝑥 is updated only temporarily



Another Fun Thing: Commuting Matrices

We can verify parallelization of arbitrary commuting matrices

• Since commutative matrices are simultaneously diagonalizable

𝑥 ↦ 𝛼 0 + 𝛽 1

𝑥 ↦ 0 𝑥 ↦ 1

() ↦ 1 𝑥↦|0⟩ () ↦ 1 𝑥↦|1⟩

𝑅𝜃1
𝑥 || 𝑅𝜃2

𝑥

() ↦ 1 𝑥↦|0⟩ () ↦ 𝑒𝑖 𝜃1+𝜃2
𝑥↦|1⟩

𝑥 ↦ 0 𝑥 ↦ 𝑒𝑖 𝜃1+𝜃2 1

𝑥 ↦ 𝛼 0 + 𝛽𝑒𝑖 𝜃1+𝜃2 1
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𝑅𝜃1
𝑥  and 𝑅𝜃2

𝑥 have the same 

eigenvectors 0 , 1
 ⇒ Quantum case analysis by 0 , 1

Global phases can be tracked with
empty-qubit points-to tokens



Outline

• Motivation: Parallelizing Quantum Programs

• Our Work: Concurrent QSL for Fine-Grained Parallelism

• Extension to Probabilistic Reasoning & Conclusion
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Extension to Probabilistic Reasoning

• Want to support quantum measurements!

• Challenge: Precise reasoning about probabilistic behavior

• Density matrix, probabilistic distribution modulo equalities

• e.g., 
1

2
0 0 +

1

2
1 1 =

1

2
+ + +

1

2
− − =

1

2

1 0
0 1

• Our idea: Refine Demonic Outcome Logic [Zilberstein+ POPL’25]
& its CSL variant [Zilberstein+ arXiv]

• Key mechanism: Probabilistic combination 𝑃 +𝑝 𝑄
• Solves the limitations of the existing quantum SL [Le+ POPL’22]

• Model: Convex PCM (new!), a hybrid of convex space & PCM
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Two-Layer Logic

• Quantum points-to token (as vector)    𝑥 ↦ 𝜓 and   qubit token   [𝑥]

• Sensitive to global phase because of linear combination of Hoare triples
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Layer1:   Vector-based Quantum Separation Logic (I talked today)

Layer2:   Probabilistic Quantum Separation Logic (New)

• Quantum points-to token (as density operator)    𝑥 ↦ 𝜌

• Probabilistic combination  𝑃 +𝑝 𝑄

• Support quantum measurements

• Insensitive global phase

“densify”



Conclusion

• We proposed a concurrent quantum separation logic
for modular verification of fine-grained parallelism

• Our logic supports shared quantum resources via invariants,
the linear combination rule, and the anti-frame rule by atomicity

• Future work

• More powerful concurrency reasoning

• Automated optimization of quantum programs & its verification
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Our Target Language
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𝑒 ∷= 𝑥 ∣ 𝑙 ∣ 𝑛 ∣ ∣ 𝑜𝑝 𝑒

∣ qalloc (qubit allocation)

∣ qfree 𝑒 (qubit deallocation)

∣ 𝑈 ҧ𝑒 (quantum gate)

∣ meas 𝑒 (qubit measurement)

∣ 𝑒 ∣∣ 𝑒′ (parallel execution)

∣ atomic 𝑒 (atomic block)

∣ ! 𝑒 𝑒 ← 𝑒′ ⋯ (heap)

∣ if 𝑒 𝑒′ else 𝑒′′ ∣ while 𝑒 𝑒′ | ⋯

Quantum

Concurrency



Overview of Our Logic

• Quantum points-to token ҧ𝑥 ↦ 𝜓 : the state vector of ҧ𝑥 is 𝜓

• Separation ∗ means disentangled qubit states:
ҧ𝑥 ↦ 𝜓 ∗ ത𝑦 ↦ 𝜙 ≡ ഥ𝑥, ത𝑦 ↦ 𝜓 ⊗ 𝜙

• Qubit token 𝑥 (new!): Qubit 𝑥 is alive, but its state is unknown
25

𝑃 ∷= ⊤ ⊥ ¬𝑃 𝑃 ∧ 𝑄 𝑃 ∨ 𝑄
𝑃 → 𝑄 ∀𝑎. 𝑃𝑎 | ∃𝑎. 𝑃𝑎

emp 𝑃 ∗ 𝑄 | 𝑃 −∗ 𝑄
𝑙 ↦ 𝑣 ҧ𝑥 ↦ 𝜓 | 𝑥

𝑃 𝑒 𝑣. 𝑄𝑣
𝐼

𝑃 𝑒 𝑣. 𝑄𝑣 ≜ 𝑃 𝑒 𝑣. 𝑄𝑣
emp

emp qalloc 𝑥. 𝑥 ↦ 0 ∗ 𝑥 𝑥 ↦ 0 ∗ 𝑥 qfree 𝑥 emp

ҧ𝑥 ↦ 𝜓 𝑈 ҧ𝑥 ҧ𝑥 ↦ 𝑈 𝜓 … and more interesting rules!

Invariant

(SL connectives)



Linear Combination Rule
• This idea can be formalized as linear combination of Hoare triples

• With the side condition 𝑄, 𝐼: precise

• Precise assertions represent a unique (or no) resource

• e.g., emp, ⊥, 𝑙 ↦ 𝑣, 𝑥 ↦ 𝜓 , 𝑙 ↦ 𝑣 ∗ 𝑥 ↦ 𝜓 , …

• If not 𝐼: precise, the angelic branching on 𝐼 makes the rule unsound

26

ҧ𝑥 ↦ 𝜓 ∗ 𝑃 𝑒 ҧ𝑥 ↦ 𝜙 ∗ 𝑄 𝐼 ҧ𝑥 ↦ 𝜓′ ∗ 𝑃 𝑒 ҧ𝑥 ↦ 𝜙′ ∗ 𝑄 𝐼

ҧ𝑥 ↦ 𝛼 𝜓 + 𝛽 𝜓′ ∗ 𝑃 𝑒 ҧ𝑥 ↦ 𝛼 𝜙 + 𝛽 𝜙′ ∗ 𝑄 𝐼

Now Our Subgoals:

(𝑥, 𝑦) ↦ 0 𝜙0 ∗ 𝑦 𝐶0𝑋 𝑥, 𝑦 || 𝐶1𝐻 𝑥, 𝑦 𝑥, 𝑦 ↦ 0 ⊗ 𝑋 𝜙0 ∗ 𝑦

(𝑥, 𝑦) ↦ 1 𝜙1 ∗ 𝑦 𝐶0𝑋 𝑥, 𝑦 || 𝐶1𝐻 𝑥, 𝑦 𝑥, 𝑦 ↦ 1 ⊗ 𝐻 𝜙1 ∗ 𝑦



Teaser of Our Probabilistic Quantum SL

• On probabilistic combinations

𝑃 +𝑝 𝑄 ≡ 𝑄 +1−𝑝 𝑃 𝑃 +𝑝 𝑄 +𝑞 𝑅 ≡ 𝑃 +𝑝𝑞 𝑄 + 𝑅

𝑃 ⊢ 𝑃 +𝑝 𝑃 𝑃: convex ≝ ∀𝑝. 𝑃 +𝑝 𝑃 ≡ 𝑃

△ 𝑃 ≝ ∃ ҧ𝑝 ∈ 0,1 ∗ s. t. ∑ ҧ𝑝 = 1. ∑ 𝑝𝑖𝑃

𝑃 ⊢ △ 𝑃 △△ 𝑃 ≡ △ 𝑃 △ 𝑃: convex △ 𝑃 +𝑝 𝑄 ≡ △ 𝑃 +𝑝△ 𝑄

𝑃 +𝑝 𝑄 ∗ 𝑅 ≡  𝑃 ∗ 𝑅 +𝑝 𝑄 ∗ 𝑅 if 𝑅: precise

emp 𝑣 ⊕𝑝 𝑣′ 𝑣 + 𝑣′ emp ndint △ ∃𝑛. 𝑛

• Quantum
ҧ𝑥 ↦ 𝜌 +𝑝 ҧ𝑥 ↦ 𝜌′ ≡ ҧ𝑥 ↦ 𝑝𝜌 + 1 − 𝑝 𝜌′

𝑥 ↦ 𝜌 meas 𝑥 0 ∗ 𝑥 ↦ 1
𝑝

𝑃𝑟0𝜌𝑃𝑟0 +𝑝 1 ∗ 𝑥 ↦ 1
1−𝑝

𝑃𝑟1𝜌𝑃𝑟1 
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1 − 𝑝 𝑞

1 − 𝑝𝑞

𝑖Convex hull modality

𝑝

where 𝑝 = tr(𝑃𝑟0𝜌)



Basics of Quantum Computing

• State for a qubit (quantum bit) = 2D vector 𝜓 ∈ ℂ2

Superposition 𝜓 = 𝛼 0 + 𝛽 1 𝛼, 𝛽 ∈ ℂ 𝛼 2 + 𝛽 2 = 1

• State for n qubits = Vector of tensor product space ℂ2 ⊗ ⋯ ⊗ ℂ2 ≅ ℂ2𝑛

• Composite of 𝜓 and 𝜙 = Tensor product 𝜓 ⊗ 𝜙 = 𝜓 𝜙 = 𝜓𝜙

• Quantum gate = Unitary matrix 𝑈 ∶ ℋ → ℋ

e.g.,   𝐻 𝑏 =
1

2
0 + −1 𝑏 1 𝐶𝑋 𝑏 𝑐 = 𝑏 𝑏 xor 𝑐 𝑏, 𝑐 ∈ 0,1

• Measurement = Probabilistic branching & convergence

𝛼 0 + 𝛽 1 → ቐ
0 (𝑤. 𝑝. 𝛼 2)

|1⟩ (𝑤. 𝑝. 𝛽 2)
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Hadamard Controlled X



Quantum Program (Circuit)

29

𝑥, 𝑦 ↦ 00 → + 0 →
1

2
00 + 11 ) → ቐ

00 (𝑤. 𝑝. 1/2)

|11⟩ (𝑤. 𝑝. 1/2)

Entangled state 

𝑥 and 𝑦 are entangled   ⇔ 𝑥, 𝑦 ↦ 𝜓 such that ∀ 𝜙 , 𝜙′ . 𝜓 ≠ 𝜙 ⊗ 𝜙′

qubits

Gate applications

Measurements

± ≝
1

2
0 ± 1

Stochastic dependence
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