- =

Nola: Laterfree ghost state
for verifying termination in Iris

Yusuke Matsushita Kyoto University
Takeshi Tsukada Chiba University

June 20, 2025 — PLDI 2025 @ Seoul

Shared Mutable State * Termination is Hard

Shared Mutable State * Termination is Hard

let r = ref (A _.()) in
xr = A_.(xr)QQ; (xr)()

Landin’s knot

Shared Mutable State * Termination is Hard

let r = ref (A _.()) in
xr = A_.(xr)QQ; (xr)()

Shared mutable ref to a function r: ref (() = ())

Landin’s knot

Shared Mutable State * Termination is Hard

let r = ref (A _.()) in
xr = A_.(xr)QQ; (xr)()

Shared mutable ref to a function r: ref (() = ())

Landin’s knot

No loop appears in the program

Shared Mutable State * Termination is Hard

let r = ref (A _.()) in
xr = A_.(xr)QQ; (xr)()

Shared mutable ref to a function r: ref (() = ())

Landin’s knot

No loop appears in the program

But it loops infinitely... &

Shared Mutable State * Termination is Hard

let r = ref (A _.()) in
xr = A_.(xr)QQ; (xr)()

Shared mutable ref to a function r: ref (() = ())

Landin’s knot

" <. pDeref

No loop appears in the program .~ & Call

But it loops infinitely... &

Shared Mutable State * Termination is Hard

let r = ref (A _.()) in
xr = A_.(xr)QQ; (xr)()

Shared mutable ref to a function r: ref (() = ())

Landin’s knot

" <. pDeref

No loop appears in the program .~ & Call

But it loops infinitely... &
Self-reference

Our work, Nola Matsushita & Tsukada PLDI °25

Ur work, Nola Matsushita & Tsukada PLDI ’25

O N
~ Seattle) ; '\ i
o q ; NORTH , g !
WASHINGTON it MONTANA ; DAKOTA \ LT \
T3 ~Fh : R MINNESOTA" “=oi ot
g o Lo S SOUTH. ! " WISCONSIN/ -
3 : : i / oronto
OREGON % Noruo AN | i I y { MICHIGAN bt
| ICAWYOMING b-- 5= eesess g S Chi '| NEW.YORK
............ | o0 iowall | Chicago S Lo hen
1 : | NEBRASKA T | i ol
; ;‘ W b - anilpmnn s ¢ 5 ¥ OH0 BRI REN N SFEC Qi
: 3 i i ; i INDIANA =
" NEvaDA i R) United States NPIANA % Washington
v ! i COLORADO ! } 3 s B s WESTIP 2 9%+ §
San Frgnmscox\ ; ; | KANSAS 'MISSOURI . . U VIRGINIA
A . \X - 1" KENTUCKY,~ >~ VIRGINIA
CALIFORNIA . | ! DR (. VI e "o < T S
- olLas Vegas | ' ; i ~“ NORTH
! | | OKLAHOMA | TENNESSEEL_.,;‘ _____ INOHCLHIN
Y | ! i ARKANSAS™ =" 7 7 g g
L°SA399'95 ‘. ARIZONA ! : .- S ARKENSAS { - N SOUTH ™
San Diego ! QW MEXICO | Dallas ~, M _".SS'SS”D;P' i CAROLINA
; ; o g 5 ALABAMA
e TEXAS ‘: {GEORGIA
\ {' " V. I‘ o B L - S
' A i 0L _i
(%/ | Sgn Antonioo Houston
& - ,
s S5 FLORIDA
o% Y Monterrey
2, > . JORE 15 Gulf of O
S . Mexico Miami
. Mexico :
L A L ®
ER . Havana

New Orleans,
Louisiana

= NOLA

Our work, Nola Matsushita & Tsukada PLDI °25

O N
~ Seattle a1 ; | i
o & ; NORTH , g !
WASHINGTON it MONTANA : DAKOTA \ \
o e i | oot e o NUNNESOL Sy Ottawa
4 i 8 ; ~' Y, iy — @
g o Lo S SOUTH. ; " _WISCONSIN /
OREGON | | oo ! {MICHIGAN|| Toronto
; { WYOMING f---nc---mmmmeee o \ . NEW YORK
____________________________________ : i IOWA - Ch'ca.go T Pt
! : : NEBRASKA I,l._,LINOISO:‘-“"-E--“ : i
! ! T W e 7, ; b - anilpmnn s . 5 ¥ OH0 BRI REN N SFEC o‘l
i NEVADA /4 ! Unlted’StateS“"Az; INDIANA ,"':“Washingtiiﬁ
1 | (UTAH ¥ R R o | ; § =4 WEST + ©: ' %
San Frgnciscox\ ; 5 5 KANSAS IMISSOURI{ 5.~ VIRGINIA . .2
A . \X - 1 KENTUCKY,~* VIRGINIA
CALIFORNIA . - ! - (. R o W md Y
. oLas Vegas | i | .
9 ; | | OKLAHOMA | ' TENNESSEE S NORTH i
\ : | t ARKANSAS™ =1 7 AR
LosAggeIes . ARIZONA | : - ARKANSAS : ‘. AN
San Diego ! QW MEXICO | Dallas ~, M _".SS'SS’P;P' i CAROLINA
o ; ; > | i ALABAMA
‘_E.J T TEXAS NF ': |GEORGIA &
& \\ / / ' e PRt hoos
’ o~ ; (o)
(%/ Sgn Antonioo Houston
& :
D LR FLORIDA
o ol
s Monterrey_
2, > { SO i Gulf of fle.__
S . Mexico Miami
. Mexico :
L A v, B ®
L RN S Havana

New Orleans,
Louisiana

= NOLA

Our work, Nola Matsushita & Tsukada PLDI °25

O N
~ Seattle P ; '\ |
o e ; NORTH , g !
WASHINGTON it MONTANA : DAKOTA \ \
il Ty e Y. N E L A Ottawa
g o L S SOUTH 3 . WISCONSIN /
OREGON % o0 E : % {MICHIGAN T°'g“‘°
; WYOMING b---oomm-mmennee o { N NEW YORK
____________________________________ : i IOWA - Ch'ca.go T Pt
! : : NEBRASKA I,l._,LINOISO:‘-“"-E--“ : i
i ; T W e 7, ; b - anlrnnes . :' ¥ OH0 BRI REN N SFEC o‘l
" NEVADA | g United States INDIANA 2 Washington
1 | (UTAH ¥ R R o | ; § =4 WEST + ©: ' %
San Frgnciscox\ ; 5 5 KANSAS ‘MISSOURI .. VIRGINIA . .2
A . \X - 1" KENTUCKY,~ >~ VIRGINIA
CALIFORNIA . | ! DR (. I P = T S
. oLas Vegas | - | .
9 ! ‘ | OKLAHOMA | ' TENNESSEE S NORTH i
\ : | t ARKANSAS™ =1 7 i RN
LosAggeIes . ARIZONA | : - ARKANSAS : ‘. AN
San Diego ! QW MEXICO | Dallas ~, M _".SS'SS’P;P' i CAROLINA
R= == ; ; o g 5 ALABAMA
‘\LJ N TEXAS ': |GEORGIA &
e \\ " ‘_-:‘ (p® BT SE
’ A i 0L _i
(%/ Sgn Antonioo Houston
. :
o) FLORIDA
o Vol
N Monterrey_
2, > { SO i Gulf of fle.__
S . Mexico Miami
. Mexico :
L A v, B ®
RN, Havana

New Orleans,
Louisiana

= NOLA

Our work, Nola Matsushita & Tsukada PLDI °25

G

Our work, Nola Matsushita & Tsukada PLDI °25

=y Nola

Our work, Nola Matsushita & Tsukada PLDI °25

=y No later

Our work, Nola Matsushita & Tsukada PLDI °25

=y No later

Helps you finish your work...

Our work, Nola Matsushita & Tsukada PLDI °25

=y No later

Later
modality

>

Our work, Nola Matsushita & Tsukada PLDI °25

=y No later

ti
> IriS pamee"

Later
modality

Our work, Nola Matsushita & Tsukada PLDI °25

=y No later
*_ Separation
modatiy bz Iris Top

Our work, Nola Matsushita & Tsukada PLDI °25

=y No later

ti
> IriS pamee"

Later
modality

Our work, Nola Matsushita & Tsukada PLDI °25

=y No later

> I r (%S i‘e)giacration

Later
modality

Shared mutable state

Our work, Nola Matsushita & Tsukada PLDI °25

=y No later

> I r (%S i‘e)giacration

Later
modality

Shared mutable state
Invariants & Borrows

Our work, Nola Matsushita & Tsukada PLDI °25

=y No later

D I r (%S i‘e)giacration

Later
modality

Shared mutable state
Invariants & Borrows

Our work, Nola Matsushita & Tsukada PLDI °25

=y No later

D I r (%S i‘e)giacration

Later
modality

Shared mutable state Sound
Invariants & Borrows Termination?

Our work, Nola Matsushita & Tsukada PLDI °25

=y No later
*_ Separation
modatiy bz Iris Top

Shared mutable state Sound
Invariants & Borrows Termination v

Our work, Nola Matsushita & Tsukada PLDI °25

=y No later
*_ Separation
m IT7S Logic =

o

Invariants & Borrows Termination v

Shared mutable state Sound

Invariant Modern usage established by Ir(S [Jung+ ’15]

Invariant Modern usage established by Ir(S [Jung+ ’15]

4+ Invariant | P|: Roughly, the situation P always holds

Invariant Modern usage established by Ir(S [Jung+ ’15]

4+ Invariant | P|: Roughly, the situation P always holds

» Shareable! |P| = |P|*|P| = Shared mutable state

Invariant Modern usage established by Ir(S [Jung+ ’15]

4+ Invariant | P|: Roughly, the situation P always holds

» Shareable! |P| = |P|*|P| = Shared mutable state

A

Shared mutableref r:ref T dv.r— v x v: T

Invariant Modern usage established by Ir(S [Jung+ ’15]

4+ Invariant | P|: Roughly, the situation P always holds

» Shareable! |P| = |P|*|P| = Shared mutable state

A

dv.r—> v x v: T

Shared mutableref r:ref T

Can be nested! r: ref (ref T)

Invariant Modern usage established by Ir(S [Jung+ ’15]

4+ Invariant | P|: Roughly, the situation P always holds

» Shareable! |P| = |P|*|P| = Shared mutable state

A

dv.r—> v x v: T

Shared mutableref r:ref T

Can be nested! r: ref (ref T) P € iProp = |P|€ iProp
SL Prop

Invariant Modern usage established by Ir(S [Jung+ ’15]

4+ Invariant | P|: Roughly, the situation P always holds

» Shareable! |P| = |P|*|P| = Shared mutable state

A

dv.r—> v x v: T

Shared mutableref r:ref T

Can be nested! r: ref (ref T) P € iProp = |P|€ iProp
SL Prop

> Need it,as we are in Separation Logic [Ishtag & O’Hearn ’01]

Invariant Modern usage established by Ir(S [Jung+ ’15]

4+ Invariant | P|: Roughly, the situation P always holds

» Shareable! |P| = |P|*|P| = Shared mutable state

A

dv.r—> v x v: T

Shared mutableref r:ref T

Can be nested! r: ref (ref T) P € iProp = |P|€ iProp
SL Prop

> Need it,as we are in Separation Logic [Ishtag & O’Hearn ’01]

Notshareable r— Vv > re—> Vxr—\V

Invariant Modern usage established by Ir(S [Jung+ ’15]

4+ Invariant | P|: Roughly, the situation P always holds

» Shareable! |P| = |P|*|P| = Shared mutable state

A

dv.r—> v x v: T

Shared mutableref r:ref T

Can be nested! r: ref (ref T) P € iProp = |P|€ iProp
SL Prop

> Need it,as we are in Separation Logic [Ishtag & O’Hearn ’01]

Notshareable r— Vv > re—> Vxr—\V

- State mutation [FHV*P]*F:W[FI—)W*P]

Soundness & Later modality

Soundness & Later modality

4 Naive invariant is unsound!

Soundness & Later modality

4+ Naive invariant is unsound! [P * Q] = [P 8 R] %
LP]* Q] e [R

Soundness & Later modality

+ Naive invariant is unsound! |P* Q| e [P *R| Soe
> Can't just store any P € iProp [P * Q] c [R]

Soundness & Later modality

4 Naive invariant is unsound! [P k Q] = [P * R] %

> Can't just store any P € iProp [P * Q] c [R]
- Paradoxes [Krebbers+’17] [M&T '25] = Landin’s knot &

Soundness & Later modality

4 Naive invariant is unsound! [P k Q] = [P * R] %

> Can't just store any P € iProp [P * Q] c [R]
- Paradoxes [Krebbers+’17] [M&T '25] = Landin’s knot &

4+ Known fix: Weaken by the later modality > [Nakano ’00]

Soundness & Later modality

4 Naive invariant is unsound! [P k Q] = [P * R] %

> Can't just store any P € iProp [P * Q] c [R]
- Paradoxes [Krebbers+’17] [M&T '25] = Landin’s knot &

4+ Known fix: Weaken by the later modality > [Nakano ’00]
P+ Q] e[-PxR]

[[>P ¥ Q] e [R] II‘(S

Soundness & Later modality

4 Naive invariant is unsound! [P k Q] = [P * R] %

> Can't just store any P € iProp [P * Q] c [R]
- Paradoxes [Krebbers+’17] [M&T '25] = Landin’s knot &

4+ Known fix: Weaken by the later modality > [Nakano ’00]

» |> P|: Situation > P always holds [[>P 3 Q] e [[>P % R]
[=P]* Q] e [R|

[ri's

Soundness & Later modality

4 Naive invariant is unsound! [P k Q] = [P * R] %

> Can't just store any P € iProp [P * Q] c [R]
- Paradoxes [Krebbers+ 7] [M&T '25] =~ Landin’s knot &

4+ Known fix: Weaken by the later modality > [Nakano ’00]

» |> P|: Situation > P always holds [[>P 3 Q] e [[>P % R]
[=P]* Q] e [R|

[ri's

Later weakens: P = - P

Soundness & Later modality

4 Naive invariant is unsound! [P k Q] = [P * R] %

> Can't just store any P € iProp [P * Q] c [R]
- Paradoxes [Krebbers+’17] [M&T '25] ~ Landin’s knot &

4+ Known fix: Weaken by the later modality > [Nakano ’00]

» |> P|: Situation > P always holds [[>P 3 Q] e [[>P % R]
[=P]* Q] e [R|

[ri's

Later weakens: P = > P but-P> P

Soundness & Later modality

4 Naive invariant is unsound! [P k Q] = [P * R] %

> Can't just store any P € iProp [P * Q] c [R]
- Paradoxes [Krebbers+’17] [M&T '25] ~ Landin’s knot &

4+ Known fix: Weaken by the later modality > [Nakano ’00]

» |> P|: Situation > P always holds [[>P 3 Q] e [[>P % R]

[ri's

[=P]+ Q] e [R|

Later weakens: P = > P but>P> P even>>-Px P

Soundness & Later modality

4 Naive invariant is unsound! [P k Q] = [P * R] %

> Can't just store any P € iProp [P * Q] c [R]
- Paradoxes [Krebbers+’17] [M&T '25] ~ Landin’s knot &

4+ Known fix: Weaken by the later modality > [Nakano ’00]

» |> P|: Situation > P always holds [[>P 3 Q] e [[>P % R]

[ri's

>

Sound! But weaker... & [[>P * Q] e [R]

Later weakens: P = > P but>P> P even>>-Px P

Challenge: Termination & liveness verification

Challenge: Termination & liveness verification

+ Later > blocks verifying termination & liveness!

Challenge: Termination & liveness verification

+ Later > blocks verifying termination & liveness!

» Shared mutable refs cannot be rightly dereferenced

Challenge: Termination & liveness verification

+ Later > blocks verifying termination & liveness!

» Shared mutable refs cannot be rightly dereferenced

A

dv.r— v % v: T

r:refT

Challenge: Termination & liveness verification

+ Later > blocks verifying termination & liveness!

» Shared mutable refs cannot be rightly dereferenced

A

>dV.r— v % v: T

r:refT

Challenge: Termination & liveness verification

+ Later > blocks verifying termination & liveness!

» Shared mutable refs cannot be rightly dereferenced

A

>dV.r— v % v: T

r:refT

Total [r: refT] xr [V.DV:T]

Challenge: Termination & liveness verification

+ Later > blocks verifying termination & liveness!

» Shared mutable refs cannot be rightly dereferenced

A

>dV.r— v % v: T

r:refT

Total [r - ref T] xr [V' D\V: T__] Blocks access

Challenge: Termination & liveness verification

+ Later > blocks verifying termination & liveness!

» Shared mutable refs cannot be rightly dereferenced

A

>dV.r— v % v: T

r:refT

Total [r - ref T] xr [V' D\V: T__] Blocks access

{r: refT}*r{v.v:T}

Partial

Challenge: Termination & liveness verification

+ Later > blocks verifying termination & liveness!

» Shared mutable refs cannot be rightly dereferenced

A

>dV.r— v % v: T

r:refT

Total [r - ref T] xr [V' D\V: T,] Blocks access

{r:refT}sr{v. »V\D Step-indexing

Partial

Challenge: Termination & liveness verification

+ Later > blocks verifying termination & liveness!

» Shared mutable refs cannot be rightly dereferenced

r:refT = |(>3Av.ri— v % v:T

Total [r: ref T] xr [V D\V T,] Blocks access
{r:refT}xr{v.yv

Partial \/} Step-indexing

¢ L . : .
However, Iris’s use of step=-indexing means that Iris-

Simuliris based approaches ... do not support reasoning about

Gaher+ "22 liveness properties such as termination preservation.

Challenge: Termination & liveness verification

+ Later > blocks verifying termination & liveness!

» Shared mutable refs cannot be rightly dereferenced ?

A

r:refT

>dV.r— v % v: T e

Total [r - ref T] xr [V' D\V: T,] Blocks access

{r:refT}sr{v. »V\D Step-indexing

Partial

o . . However, Iris’s use of step-indexing means that Iris-
Simuliris

) based approaches ... do hot support reasoning about
Gaher+ "22 liveness properties such as termination preservation.

Our work, Nola Matsushita & Tsukada PLDI °25

Our work, Nola Matsushita & Tsukada PLDI °25

w Use syntax!

Our work, Nola Matsushita & Tsukada PLDI °25

w Use syntax! For SL assertions to share

Our work, Nola Matsushita & Tsukada PLDI °25

w Use syntax! For SL assertions to share

Syntax gives you better control of what can be shared,

than the later modality >, to achieve soundness

Our work, Nola Matsushita & Tsukada PLDI °25

w Use syntax! For SL assertions to share

Syntax gives you better control of what can be shared,
than the later modality >, to achieve soundness

Our work, Nola Matsushita & Tsukada PLDI °25

w Use syntax! For SL assertions to share

Syntax gives you better control of what can be shared,
than the later modality >, to achieve soundness

P € Fml Syntactic SL formula

Our work, Nola Matsushita & Tsukada PLDI °25

w Use syntax! For SL assertions to share

Syntax gives you better control of what can be shared,

than the later modality >, to achieve soundness

[P Q] e [Pl * R] Winv] P € Fml Syntactic SL formula

[Pl Q] eTK Winv [] : Fml — iProp Semantics

Our work, Nola Matsushita & Tsukada PLDI °25

w Use syntax! For SL assertions to share

Syntax gives you better control of what can be shared,

than the later modality >, to achieve soundness

[Pl = Q] e [Pl = R] Winv[| P € Fml Syntactic SL formula

[P| % Q] e [R] Winv[| : Fml — iProp Semantics

Proofs can be written semantically with iProp in Iris !

Nola’s syntax clears the later modality

Nola’s syntax clears the later modality

4+ Just build the syntax for SL formulas & its semantics

Nola’s syntax clears the later modality

4+ Just build the syntax for SL formulas & its semantics
Fml>P,Q =,, P*Q |P-*xQ | PVQ | Va® | 34 &
‘¢(¢€Prop)‘r‘|%v‘(Peval)

Nola’s syntax clears the later modality

4+ Just build the syntax for SL formulas & its semantics
Fml>P,Q =,, P*Q |P-*xQ | PVQ | Va® | 34 &
‘¢(¢€Prop)‘r‘|%v‘(Peval)

Invariant

Nola’s syntax clears the later modality

4+ Just build the syntax for SL formulas & its semantics
Fml>P,Q =,, P*Q |P-*xQ | PVQ | Va® | 34 &
‘¢(¢€Prop)‘r‘|%v‘(Peval)

Invariant

| |: Fml — iProp

Nola’s syntax clears the later modality

4+ Just build the syntax for SL formulas & its semantics
Fml>P,Q =,, P*Q |P-*xQ | PVQ | Va® | 34 &
‘¢(¢€Prop)‘r‘|%v‘(Peval)

Invariant

- Fml — iPro
R T B AT

Nola’s syntax clears the later modality

4+ Just build the syntax for SL formulas & its semantics
Fml> P, Q =y PxQ | P-*Q | PV | V4% | 4 ¢
‘¢(¢€Prop)‘r‘|9v|(Peval)

Invariant

[Pxq] = [P]=[q] [(r)] = [P

| |: Fml — iProp

Nola’s syntax clears the later modality

4+ Just build the syntax for SL formulas & its semantics
Fml> P, Q =y PxQ | P-*Q | PV | V4% | 4 ¢
‘¢(¢€Prop)‘r‘|9v|(Peval)

Invariant

[Pxq] = [P]=[q] [(r)] = [P

| |: Fml — iProp

4+ Now later-=free!

Nola’s syntax clears the later modality

4+ Just build the syntax for SL formulas & its semantics
Fml> P, Q =y PxQ | P-*Q | PV | V4% | 4 ¢
‘¢(¢€Prop)‘r‘|9v|(Peval)

Invariant

[Pxq] = [P]=[q] [(r)] = [P
+ Now later-free! .= -+ -

| |: Fml — iProp

Nola’s syntax clears the later modality

4+ Just build the syntax for SL formulas & its semantics
Fml> P, Q =y PxQ | P-*Q | PV | V4% | 4 ¢
‘¢(¢€Prop)‘r‘|9v|(Peval)

Invariant

[Pxq] = [P]=[q] [(r)] = [P
+ Now later-free! .= -+ -

Later-free access! [r:refT] xr [v. vl]

| |: Fml — iProp

Verification example: Infinite shared mutable list

10

Verification example: Infinite shared mutable list

4 No later remains if we use Nola

4

listér =2 *

ds. r+1r—>s * list ¢ s

| [list ¢ r]] | *(r+1) [s.[list & s] |

Winv | |

[ris

llistdr = >Pr| *

>

—

—
—

S.r+1m+— s % llist® s

| llistdr | x(r+1) |s. > llistd s |

10

Verification example: Infinite shared mutable list

4 No later remains if we use Nola

i [ris

listér =2 % listdr £ |odr| =

ds. r+1+—=>5s * list ¢ s >3s. r+1 s * llist ® s

[|llis’cszS r]]] *(r+1) [s.ﬂlistszB s]]]WinVH [Ilistdir] *(r+1) [s. > llist@s]

4+ Can verify termination of iteration naturally!

fn iterc(f,c,r) { if *c >0 { Vi [5 r] £0r) [T]WinV[[]]
f(r); *c = *xc —1;
iterc(f,c,*(r+1)) } } [|[1ist€;15 rl = C|—>n] iterc(f,c,r) [C|—>O

]Winv[[]]

10

Nola’s soundness & expressivity

11

Nola’s soundness & expressivity

+ Well-definedness of | | is the key to soundness

11

Nola’s soundness & expressivity

+ Well-definedness of | | is the key to soundness

» No Landin’s knot paradoxes!

11

Nola’s soundness & expressivity

+ Well-definedness of | | is the key to soundness

» No Landin’s knot paradoxes!

[T1e[T1] 2, [T]e|[T] Winv{ |

11

Nola’s soundness & expressivity

+ Well-definedness of | | is the key to soundness

» No Landin’s knot paradoxes!

[T1e[T1] 2, [T]e|[T] Winv{ |

Bad self-reference

11

Nola’s soundness & expressivity

+ Well-definedness of | | is the key to soundness

» No Landin’s knot paradoxes!

[T1e[T]] 2, [T]|e|T]

Winv | |

Bad self-reference
+ Allows flexible construction for extra expressivity

11

Nola’s soundness & expressivity

+ Well-definedness of | | is the key to soundness

» No Landin’s knot paradoxes!

[T1e[T1] 2, [T]e|[T] Winv{ |

Bad self-reference
+ Allows flexible construction for extra expressivity

> Later-weakening [>[T]e[T]] 2 »[T]|e [T]Winvll]]

11

Nola’s soundness & expressivity

+ Well-definedness of | | is the key to soundness

» No Landin’s knot paradoxes!

[T1e[T1] 2, [T]e|[T] Winv{ |

Bad self-reference

+ Allows flexible construction for extra expressivity

> Later-weakening [>[T]e[T]] 2 »[T]|e [T]Winvll]]

> Stratification [].: Fml; — iProp [[Ple[Q1]; =

[[[Pﬂl] - [ﬂQH1]WinV[H]O

11

To experts: Power of SL formulas

12

To experts: Power of SL formulas

+ Any semantic SL props can be stored under later

> Precisely subsuming the existing later-weakened approach
Fml>P,Q :=,, P*xQ | - | (P €, Fml)
> p (P € » iProp)
SP] 2 5P »P 2 SnextP SnextP £ »P

12

To experts: Power of SL formulas

+ Any semantic SL props can be stored under later

> Precisely subsuming the existing later-weakened approach
Fml>P,Q :=,, P*xQ | - | (P €, Fml)
> p (P € » iProp)
SP] 2 5P »P 2 SnextP SnextP £ »P

4 The set of SL formulas can even be extensible

> By parameterizing over the constructors, just like iProp’s 2

12

® ® o ,
To experts: Nola’s model just generalizes Iris’s

13

To experts: Nola’s model just generalizes Iris’s

4+ Nola’s model for the invariant generalizes Iris’s
» Fml for » iProp, | |: Fml — iProp for ©: » iProp — iProp

K
&= —a [ris
INvFml % AvutH (N 0 AG Fml) tINv £ AutH (N 0 A (» iProp))
T Yoy R g (11
P| = 4diio|t« agP] >P| = di o1« ag(nextP)]
wWinv I“] — 947 :N @\ Fml. Wlinv = = IA: N @\ > iP}’Op.
________ T Viny) . . AN §9150% oA . R
eag I % (([I4]+D},) ViEL) | [eagll =« 3k ((s11+d},) viE})
"""" redom T redom I - N

13

Rust-style borrows

14

Rust-style borrows

+ RustBelt &#’s lifetime logic [Jung+ ’'18], but later-free

14

Rust-style borrows

+ RustBelt &#’s lifetime logic [Jung+ ’'18], but later-free

Rust’s borrow {R}

let mut 1 = 0;

let b = &mut 1;
{*b t= 7,

print(l);

14

Rust-style borrows

+ RustBelt &#’s lifetime logic [Jung+ ’'18], but later-free

Rust’s borrow R} Reasoning in SL —#
let mut 1 = 0; dn. l—n 1:int
let b = &mut 1: ' - N
{ b 4= 7- A (EInlI%n) 1r§ | &b(gnlen)\
: 1 % int § T, bigamutint AN\
print(l); d ¥ (o] 1 %, (3n. 1 —n)

dn. 1—n 1:1int T dn. 1 — n

14

Rust-style borrows

+ RustBelt &#’s lifetime logic [Jung+ ’'18], but later-free

Rust’s borrow R} Reasoning in SL —#
let mut 1 = 0; dn. l—n 1:int
let b = &mut].; / [] \
i A (An. 1w>pn) P & (En 10
b= 7 e §om, bisamut int N\
print(l); d | Tv (o] 1 %, (3n. 1 —n)
dn. 1l—n 1:int dn. 1 — n

p] =2Wbrll g*p « AP fo % A*P Wborll [p]

& P x [a]g VUL ®2p « [P] ®P « [P] 2Vl &P« [o],

14

Case study: RustHalt

15

Case study: RustHalt

+ Semantic foundation for verifying Rust termination

15

Case study: RustHalt

+ Semantic foundation for verifying Rust termination

Example fn iter(f,1) { match 1 { Nil = (), Cons(a,l’) = { f(a); iter(f,*1’) } } }
Va. a:&mutT + f(a) 4 _. w AY, [(a,a')]. d =fa-> ¢][]
1: & mut List<T> + iter(f,1) 4 . ~» Ay, [(LI)]. I =map fl > ¥ []

15

Case study: RustHalt

+ Semantic foundation for verifying Rust termination
» Refines RustHornBelt (R} [M+ '22] with Nola

Example fn iter(f,1) { match 1 { Nil = (), Cons(a,l’) = { f(a); iter(f,*1") } } }
Va. a:&mutT + f(a) 4 . » Ay, [(a,a)]. a’ =fa-> y[]
1: & mut List<T> + iter(f,1) 4 . ~» A, [(LI)]. UV =mapfl - ¢[]

15

Case study: RustHalt

+ Semantic foundation for verifying Rust termination

» Refines RustHornBelt (R} [M+ '22] with Nola

» Semantic typing / logical relation that enjoys extensibility
Example fn iter(f,1) { match 1 { Nil = (), Cons(a,l’) => { f(a); iter(f,*x1") } })

Va. a:&mutT + f(a) 4 . w Ay, [(a,d")]. d =fa-> y[]
1:&mut List<T> + iter(f,1) 4 . ~ Ay, [(LI)]. I’ =map fl > ¢ []

15

Case study: RustHalt

+ Semantic foundation for verifying Rust termination
» Refines RustHornBelt (R} [M+ '22] with Nola

» Semantic typing / logical relation that enjoys extensibility

Example fn iter(f,1) { match 1 { Nil = (), Cons(a,l’) = { f(a); iter(f,*1") } } }
Va. a: & mutT + f(a) 4 . w» AY,|(a,a’)].a" =fa - ¢ |[]

1: & mut List<T> + iter(f,1) 4 . ~» Ay, [(LI)]. I =map fl > ¥ []

Semantics!

[Tk, edr.T" ~» pre]

A

‘v’gﬁ,t,q. [E
o [Ar.

é._(lﬂ. pre (&Q(ﬂ)) « [o]g * [t] * ﬂliﬂ(c:z, t)]
3b. </17T. gﬁn(én)) « [o]g * [t] * |[F']](l;,t)]thH

15

Recent application: Lilo Lee+ OOPSLA "25

16

Recent application: Lilo Lee+ OOPSLA "25

4+ Fair liveness verification with Nola-style invariants

16

Recent application: Lilo Lee+ OOPSLA "25

4+ Fair liveness verification with Nola-style invariants

> Stratification for higher-order features

16

Recent application: Lilo Lee+ OOPSLA "25

4+ Fair liveness verification with Nola-style invariants

> Stratification for higher-order features

Example

while (1) { V; X = 1; while (1) { V; X = 2;
do { V;a = X; } while (a =1); V; print(a); } do { V; b = X; } while (b = 2); V; print(b); }

refines
while (1) { V; print(2); } || while (1) { V; print(1); }
preserving termination under scheduler fairness

16

To experts: Magic derivability, our finding

17

To experts: Magic derivability, our finding

+ Semantic alteration of SL formulas for the body

>

Goal: Prove subtyping on shared mutable refs semantically

Goal

I'<u uU<T

ref T < refU

Need some-
thing like

|P]

N

Q]

[(P]]

—

@]l

17

To experts: Magic derivability, our finding

+ Semantic alteration of SL formulas for the body

» Goal: Prove subtyping on shared mutable refs semantically

IT<uUu uU<T Need some- [P| & |

0]
refT < refU thing like [(P)] < [(Q]
+ Magic derivability enables this by a kind of fixpoint

|[]]5 2 30 st 5(P<=Q).[q V6 € Deriv. |[Plls © [Q]s
Judg>J = P<Q V6 € Deriv. [[P)]s [[Q]]s

A

[P<=Q]5 = [Pls = [Q]s derJ = |[J]]jer der € Deriv

Goal

17

Our WOI‘k, Nola "'db‘ Matsushita & Tsukada PLDI ’25

4+ Sound later > -free shared mutable state

» Refine Iris’s invariants |> P| & RustBelt &

» Great for termination & liveness verification
- Case study: RustHalt, RustHornBelt revised for termination

> Fully mechanized in Rocq as a library of Iris

+ Syntax P for SL formulas to share: [P |& & P

>

Extensible & Semantic SL props under later

» Magic derivability for semantic alteration

18

https://github.com/hopv/nola
https://dl.acm.org/doi/pdf/10.1145/3729250

