RustHorn: CHC-based Verification for Rust Programs ESOP2020

Yusuke Matsushita, Takeshi Tsukada and Naoki Kobayashi

The University of Tokyo, Tokyo, Japan

{yskm24t,tsukada,koba}@is.s.u-tokyo.ac.jp

Talk for PPL2020

Background CHCs for Automated Verification

 Reduction to Constrained Horn Clauses (CHCs) is a widely studied approach to automated verification

[Grebenshchikov+, 2012] [Bjørner+, 2015]

```
Program &<br/>Verified Propertyint mc91(int n) {<br/>if (n > 100) return n - 10;<br/>else return mc91(mc91(n + 11));<br/>}<br/>"for any n ≤ 101, mc91(n) returns 91 if it terminates"CHC System &<br/>Satisfiabilityinput output<br/>Mc91(n,r) \iff n > 100 \land r = n - 10<br/>Mc91(n,r) \iff n \le 100 \land Mc91(n + 11,r') \land Mc91(r',r)<br/>r = 91 \iff n \le 101 \land Mc91(n,r)<br/>"this CHC system is satisfiable"
```

A CHC solver automatically finds out a solution to the CHC system, e.g.: $Mc91(n,r) \iff r = 91 \lor (n > 100 \land r = n - 10)$

Background **Difficulties with Pointers**

- Existing method: Model the memory as an array [Gurfinkel+, 2015]
 - Not very scalable; quantified invariants are involved for even easy programs

Our Work

Focusing on programs whose **pointer usages** are managed under **ownership** in the style of the **Rust programming language**,

- We propose a **novel translation** from programs to CHCs clearing away pointers and heaps.
 - Also, we formalize and prove its correctness and confirm the effectiveness by experiments.

- Ownership and Borrow in Rust
- Our Method
- Formalization and Correctness Proof
- Experiments and Evaluation

- Ownership and Borrow in Rust
- Our Method
- Formalization and Correctness Proof
- Experiments and Evaluation

Ownership and Borrow in Rust

- The ownership system guarantees that:
 - For each memory cell and at each moment, we have
 - (i) only one alias with the update permission to the cell; or
 - (ii) some aliases with the read permission to the cell
 - "If an alias can read data, any other alias cannot update it"
- **Borrow**: a temporary transfer of a permission
 - This makes Rust really interesting!
 - The end of borrow is statically managed by *lifetimes*

Example of **Borrow**

- Ownership and Borrow in Rust
- Our Method
- Formalization and Correctness Proof
- Experiments and Evaluation

Our Method

mutable reference (i.e. pointer with a **borrowed** update permission)

- Model a pointer ma simply as a pair of values $\langle a, a_{\circ} \rangle$
 - the current value a & the value a at the end of borrow
 - Access to the future information is related to prophecy variables [Abadi & Lamport, 1991] [Jung+, 2020]

Our Method

Our model of pointer ma

How can this work?

Example I: take_max/inc_max

int *take_max(int *ma, int *mb) { if (*ma >= *mb) return ma; else return mb; } bool inc_max(int a, int b) { { int *mc = take_max(&a, &b); // borrow a & b *mc += 1; } // end of borrow return (a != b); } "for any **a** & **b**, **inc_max(a,b)** returns true" L reduction by our method permission release ma mb $TakeMax(\langle a, a_{\circ} \rangle, \langle b, b_{\circ} \rangle, r) \iff a \ge b \land b_{\circ} = b \land r = \langle a, a_{\circ} \rangle$ $TakeMax(\langle a, a_{\circ} \rangle, \langle b, b_{\circ} \rangle, r) \iff a < b \land a_{\circ} = a \land r = \langle b, b_{\circ} \rangle$ $IncMax(a, b, r) \iff TakeMax(\langle a, a \rangle, \langle b, b \rangle, \langle c, c \rangle) \land c' = c + 1 \land$ $c_{\circ} = c' \wedge r = (a_{\circ}! = b_{\circ})$ borrow $r = true \iff IncMax(a, b, r)$ permission release

Key idea: set $x_{\circ} = x$ when the permission of $mx = \langle x, x_{\circ} \rangle$ is released

Example II: take_some/inc_some

- Our method works well with recursive data types!
 - This makes our method strong and interesting

```
enum List { Cons(i32, Box<List>), Nil } use List::*;
```

```
fn take_some(mxs: &mut List) -> &mut i32 {
   match mxs {
      Cons(mx, mxs2) => if rand() { mx } else { take_some(mxs2) }
   Nil => take_some(mxs)
   }
      take_some(mxs) takes a mutable reference
   to a randomly chosen element of *mxs
```

fn sum(xs:&List)->i32 { match xs {Cons(x,xs2)=>x+sum(xs2),Nil=>0} }

```
fn inc_some(mut xs: List) -> bool {
    let n = sum(&xs); let my = take_some(&mut xs);
    *my += 1; sum(&xs) == n + 1
}    inc_some(xs) increments some element of xs
    and checks that the sum has increased by 1
```

Example II: take_some/inc_some

```
fn take_some(mxs: &mut List) -> &mut i32 {
   match mxs {
      Cons(mx, mxs2) => if rand() { mx } else { take_some(mxs2) }
   Nil => take_some(mxs)
   }
}
fn inc_some(mut xs: List) -> bool {
   let n = sum(&xs); let my = take_some(&mut xs);
   *my += 1; sum(&xs) == n + 1
}
```

"for any xs, inc_some(xs) always returns true if it terminates"

L reduction by our method

 $TakeSome(\langle [x | xs'], xs_{\circ} \rangle, r) \iff xs_{\circ} = [x_{\circ} | xs'_{\circ}] \land xs'_{\circ} = xs' \land r = \langle x, x_{\circ} \rangle$ $TakeSome(\langle [x | xs'], xs_{\circ} \rangle, r) \iff xs_{\circ} = [x_{\circ} | xs'_{\circ}] \land x_{\circ} = x \land TakeSome(\langle xs', xs'_{\circ} \rangle, r)$ $TakeSome(\langle [], xs_{\circ} \rangle, r) \iff TakeSome(\langle [], xs_{\circ} \rangle, r)$ $IncSome(xs, r) \iff TakeSome(\langle xs, xs_{\circ} \rangle, \langle y, y_{\circ} \rangle) \land y_{\circ} = y + 1 \land r = (sum(xs_{\circ}) = sum(xs) + 1)$ $r = true \iff IncSome(xs, r)$

It has a simple solution: $\frac{TakeSome(\langle xs, xs_{\circ} \rangle, \langle y, y_{\circ} \rangle) :\iff y_{\circ} - y = sum(xs_{\circ}) - sum(xs)}{IncSome(xs, r) :\iff r = true}$

Going Beyond CHCs

- Our method can be extended into reduction from a Rust program to a functional program
 - By this view we can apply various verification techniques to Rust (e.g. model checking, Boogie, Coq)

```
int *take_max(int *ma, int *mb) {
            if (*ma >= *mb) return ma; else return mb;
          }
          bool inc_max(int a, int b) {
            { int *mc = take max(\&a, \&b); // borrow a \& b
              *mc += 1; } // end of borrow
            return (a != b):
          }
               L reduction to a functional program
                                                 permission release
       let take_max (a, a') (b, b') =
          if a \ge b then (assume (b' = b); (a, a'))
                     else (assume (a' = a); (b, b'))
                                borrow-
       let inc max a b =
          let a^{-} = rand () in let b^{+} = rand () in
          let (c, c') = take_max (a, a') (b, b') in
          assume (c' = c + 1); a' <> b'
permission release
```

Advanced Features

Closure

- Permission release on the enclosed data is the twist
- FnMut can be modeled as a closure that generates a newer version of itself after it is called

• **RefCell<T>** etc.

- We need to deal with real sharing of data
- Simple remedy: pass around a global array for RefCell values
 - At the very time a mutable reference $\langle a, a_{\circ} \rangle$ is taken from a RefCell, the data at the array is updated into a_{\circ}

- Ownership and Borrow in Rust
- Our Method
- Formalization and Correctness Proof
- Experiments and Evaluation

Formalization and Correctness Proof

- Formalized the core of Rust
 - Similar to λ_{Rust} of RustBelt [Jung+, 2018] but ours is simpler;
 permission releases and lifetimes are made explicit
- Proved the correctness of the translation
 - By techniques based on **bisimulations**
 - A concept strongly related to prophecy variables is used

Formalization and Correctness Proof

 $S_{\Pi,f,L} = \operatorname{let} y = \operatorname{mutbor}_{\alpha} x$; goto $L' \quad \boldsymbol{x}_{\circ}$ is fresh $\overline{[f,L]_{\Theta} \mathcal{F} + \{(x,\langle \hat{v}_* \rangle)\}; \mathcal{S} \mid_{\mathbf{A}} \to_{\Pi} [f,L']_{\Theta} \mathcal{F} + \{(y,\langle \hat{v}_*, \boldsymbol{x}_{\circ} \rangle), (x,\langle \boldsymbol{x}_{\circ} \rangle)\}; \mathcal{S} \mid_{\mathbf{A}}}$ $S_{\Pi, f, L} = \operatorname{let} y = \operatorname{mutbor}_{\alpha} x$; goto $L' \quad \boldsymbol{x}_{\circ}$ is fresh $\overline{[f,L]_{\Theta} \mathcal{F} + \{(x, \langle \hat{v}_*, \boldsymbol{x}'_{\mathsf{O}} \rangle)\}; \mathcal{S} \mid_{\mathbf{A}} \to_{\Pi} [f,L']_{\Theta} \mathcal{F} + \{(y, \langle \hat{v}_*, \boldsymbol{x}_{\mathsf{O}} \rangle), (x, \langle \boldsymbol{x}_{\mathsf{O}}, \boldsymbol{x}'_{\mathsf{O}} \rangle)\}; \mathcal{S} \mid_{\mathbf{A}} \mathcal{F} + \{(y, \langle \hat{v}_*, \boldsymbol{x}_{\mathsf{O}} \rangle), (x, \langle \boldsymbol{x}_{\mathsf{O}}, \boldsymbol{x}'_{\mathsf{O}} \rangle)\}; \mathcal{S} \mid_{\mathbf{A}} \mathcal{F} + \{(y, \langle \hat{v}_*, \boldsymbol{x}_{\mathsf{O}} \rangle), (x, \langle \boldsymbol{x}_{\mathsf{O}}, \boldsymbol{x}'_{\mathsf{O}} \rangle)\}; \mathcal{S} \mid_{\mathbf{A}} \mathcal{F} + \{(y, \langle \hat{v}_*, \boldsymbol{x}_{\mathsf{O}} \rangle), (x, \langle \boldsymbol{x}_{\mathsf{O}}, \boldsymbol{x}'_{\mathsf{O}} \rangle)\}; \mathcal{S} \mid_{\mathbf{A}} \mathcal{F} + \{(y, \langle \hat{v}_*, \boldsymbol{x}_{\mathsf{O}} \rangle), (x, \langle \boldsymbol{x}_{\mathsf{O}}, \boldsymbol{x}'_{\mathsf{O}} \rangle)\}; \mathcal{S} \mid_{\mathbf{A}} \mathcal{F} + \{(y, \langle \hat{v}_*, \boldsymbol{x}_{\mathsf{O}} \rangle), (x, \langle \boldsymbol{x}_{\mathsf{O}}, \boldsymbol{x}'_{\mathsf{O}} \rangle)\}; \mathcal{S} \mid_{\mathbf{A}} \mathcal{F} + \{(x, \langle \hat{v}_*, \boldsymbol{x}_{\mathsf{O}} \rangle), (x, \langle \boldsymbol{x}_{\mathsf{O}}, \boldsymbol{x}'_{\mathsf{O}} \rangle)\}; \mathcal{S} \mid_{\mathbf{A}} \mathcal{F} + \{(x, \langle \hat{v}_*, \boldsymbol{x}_{\mathsf{O}} \rangle), (x, \langle \boldsymbol{x}_{\mathsf{O}}, \boldsymbol{x}'_{\mathsf{O}} \rangle)\}; \mathcal{S} \mid_{\mathbf{A}} \mathcal{F} + \{(x, \langle \hat{v}_*, \boldsymbol{x}_{\mathsf{O}} \rangle), (x, \langle \boldsymbol{x}_{\mathsf{O}}, \boldsymbol{x}'_{\mathsf{O}} \rangle)\}; \mathcal{S} \mid_{\mathbf{A}} \mathcal{F} + \{(x, \langle \hat{v}_*, \boldsymbol{x}_{\mathsf{O}} \rangle), (x, \langle \boldsymbol{x}_{\mathsf{O}}, \boldsymbol{x}'_{\mathsf{O}} \rangle)\}; \mathcal{S} \mid_{\mathbf{A}} \mathcal{F} + \{(x, \langle \hat{v}_*, \boldsymbol{x}_{\mathsf{O}} \rangle), (x, \langle \boldsymbol{x}_{\mathsf{O}}, \boldsymbol{x}'_{\mathsf{O}} \rangle)\}; \mathcal{S} \mid_{\mathbf{A}} \mathcal{F} + \{(x, \langle \hat{v}_*, \boldsymbol{x}_{\mathsf{O}} \rangle), (x, \langle \boldsymbol{x}_{\mathsf{O}}, \boldsymbol{x}'_{\mathsf{O}} \rangle)\}; \mathcal{S} \mid_{\mathbf{A}} \mathcal{F} + \{(x, \langle \hat{v}_*, \boldsymbol{x}_{\mathsf{O}} \rangle), (x, \langle \boldsymbol{x}_{\mathsf{O}}, \boldsymbol{x}'_{\mathsf{O}} \rangle)\}; \mathcal{S} \mid_{\mathbf{A}} \mathcal{F} + \{(x, \langle \hat{v}_*, \boldsymbol{x}_{\mathsf{O}} \rangle), (x, \langle \boldsymbol{x}_{\mathsf{O}}, \boldsymbol{x}'_{\mathsf{O}} \rangle)\}; \mathcal{S} \mid_{\mathbf{A}} \mathcal{F} + \{(x, \langle \hat{v}_*, \boldsymbol{x}_{\mathsf{O}} \rangle), (x, \langle \boldsymbol{x}_{\mathsf{O}}, \boldsymbol{x}'_{\mathsf{O}} \rangle)\}; \mathcal{F} + \{(x, \langle \hat{v}_*, \boldsymbol{x}_{\mathsf{O}} \rangle)\}; \mathcal{F} + \{(x, \langle \hat{v}_*, \boldsymbol{x}_{\mathsf{O}} \rangle)\}; \mathcal{F} + \{(x, \langle \hat{v}_*, \boldsymbol{x}_{\mathsf{O}} \rangle), (x, \langle \hat{v}_*, \boldsymbol{x}_{\mathsf{O}} \rangle)\}; \mathcal{F} + \{(x, \langle \hat{v}_*, \boldsymbol{x}_{\mathsf{O}} \rangle), (x, \langle \hat{v}_*, \boldsymbol{x}_{\mathsf{O}} \rangle)\}; \mathcal{F} + \{(x, \langle \hat{v}_*, \boldsymbol{x}_{\mathsf{O}}$ readout^{**a**}_{**H**, $\hat{D} \circ \check{P}$}(**a*:: $T \mid \hat{v}; \hat{\mathcal{X}}, \hat{\mathcal{M}}$) $S_{\Pi,f,L} = \operatorname{drop} x; \operatorname{goto} L' \quad \operatorname{Ty}_{\Pi,f,L}(x) = \check{P}T$ readout^{**a**}_{**H**, \hat{D}} $(a :: \check{P}T \mid \langle \hat{v} \rangle; \hat{\mathcal{X}}, \hat{\mathcal{M}})$ $\overline{[f,L]_{\Theta}\mathcal{F}+\{(x,\hat{v})\};\mathcal{S}\mid_{\mathbf{A}}\rightarrow_{\Pi}}\ [f,L']_{\Theta}\mathcal{F};\mathcal{S}\mid_{\mathbf{A}}$ $\hat{D} \circ \mathsf{own} := \hat{D} \quad \mathsf{hot} \circ \mathsf{immut}_{\beta} := \mathsf{cold}_{\beta} \quad \mathsf{cold}_{\alpha} \circ \mathsf{immut}_{\beta} := \mathsf{cold}_{\alpha}$ $(L: \operatorname{let} y = \operatorname{mutbor}_{\alpha} x; \operatorname{goto} L')_{\Pi, f}$ $S_{\Pi,f,L} = \operatorname{drop} x$; goto $L' \quad \operatorname{Ty}_{\Pi,f,L}(x) = \operatorname{mut}_{\alpha} T$ readout^{**a**}_{**H**,hot}(* $a :: T \mid \hat{v}; \hat{\mathcal{X}}, \hat{\mathcal{M}}$) $\left\{ \begin{cases} \forall (\boldsymbol{\Delta}_{\Pi,f,L} + \{(x_{\circ}, (|T|))\}). \\ \check{\varphi}_{\Pi,f,L} \Leftarrow \check{\varphi}_{\Pi,f,L'}[\langle *x, x_{\circ} \rangle / y, \langle x_{\circ} \rangle / x] \end{cases} \right\}$ $[f, L]_{\Theta} \mathcal{F} + \{ (x, \langle \hat{v}_*, \boldsymbol{x}_0 \rangle) \}; \mathcal{S} \mid_{\mathbf{A}} \to_{\Pi} ([f, L']_{\Theta} \mathcal{F}; \mathcal{S} \mid_{\mathbf{A}}) [\hat{v}_* / \boldsymbol{x}_0]$ readout^{**a**}_{**H**,hot} $(a :: \mathsf{mut}_{\beta} T \mid \langle \hat{v}, \boldsymbol{x} \rangle; \hat{\mathcal{X}} \oplus \{ | \mathsf{give}_{\beta}(*a; \boldsymbol{x} :: T) | \}, \hat{\mathcal{M}})$ $(Ty_{\Pi, f, L}(x) = \operatorname{own} T)$ $\begin{cases} \forall (\boldsymbol{\Delta}_{\Pi,f,L} + \{(x_{\circ}, (T))\}). \\ \check{\varphi}_{\Pi,f,L} \Leftarrow \check{\varphi}_{\Pi,f,L'}[\langle \ast x, x_{\circ} \rangle / y, \langle x_{\circ}, \circ x \rangle / x] \end{cases}$ readout^{**a**}_{**H**,cold_{$\hat{\sigma}$}(**a*:: $T \mid \hat{v}; \hat{\mathcal{X}}, \hat{\mathcal{M}}$)} $S_{\Pi,f,L} = \operatorname{immut} x; \operatorname{goto} L'$ $(\mathrm{Ty}_{\Pi,f,L}(x) = \mathsf{mut}_{\alpha} T)$ readout^{**a**}_{**H**,cold_{β} (*a*:: mut_{β'} *T* | $\langle \hat{v}, \boldsymbol{x} \rangle$; $\hat{\mathcal{X}}, \hat{\mathcal{M}}$)} $[f, L]_{\Theta} \mathcal{F} + \{ (x, \langle \hat{v}_*, \boldsymbol{x}_0 \rangle) \}; \mathcal{S} \mid_{\mathbf{A}} \to_{\Pi} ([f, L']_{\Theta} \mathcal{F} + \{ (x, \langle \hat{v}_* \rangle) \}; \mathcal{S} \mid_{\mathbf{A}}) [\hat{v}_* / \boldsymbol{x}_0]$ readout^{† α}_{**H**} (**a* :: *T* | *x*; {[take^{† α} (**a*; *x* :: *T*)]}, Ø) $(L: \operatorname{drop} x; \operatorname{goto} L')_{\Pi, f}$ $S_{\Pi,f,L} = \operatorname{swap}(*x,*y); \operatorname{goto} L' \quad \operatorname{Ty}_{\Pi,f,L}(y) = \operatorname{own} T$ $\left\{ \forall (\mathbf{\Delta}_{\Pi,f,L}). \ \check{\varphi}_{\Pi,f,L} \Longleftarrow \check{\varphi}_{\Pi,f,L'} \right\}$ $\mathbf{H}(a) = a' \quad \text{readout}_{\mathbf{H},\hat{D}}^{\mathbf{a}}(a' :: PT \mid \hat{v}; \, \hat{\mathcal{X}}, \hat{\mathcal{M}})$ $(\mathrm{Ty}_{\Pi, f, L}(x) = \check{P}T)$ $[f, L]_{\Theta} \mathcal{F} + \{(x, \langle \hat{v}_*, \boldsymbol{x}_{\circ} \rangle), (y, \langle \hat{w}_* \rangle)\}; \mathcal{S} \mid_{\mathbf{A}}$ $:= \left\{ \begin{cases} \forall (\boldsymbol{\Delta}_{\Pi,f,L} - \{(x, \mathsf{mut}\,(\!| T |\!))\} + \{(x_*, (\!| T |\!))\}). \\ \check{\varphi}_{\Pi,f,L}[\langle x_*, x_* \rangle / x] \Leftarrow \check{\varphi}_{\Pi,f,L'} \end{cases} \right\}$ readout^{**a**}_{**H** \hat{D}}(**a*:: *PT* | \hat{v} ; $\hat{\mathcal{X}}$, $\hat{\mathcal{M}} \oplus \{ |\hat{D}^{\mathbf{a}}(a)| \}$) $(\mathrm{Ty}_{\Pi,f,L}(x) = \mathsf{mut}_{\alpha} T)$ $\rightarrow_{\Pi} [f, L']_{\Theta} \mathcal{F} + \{(x, \langle \hat{w}_*, \boldsymbol{x}_{\circ} \rangle), (y, \langle \hat{v}_* \rangle)\}; \mathcal{S} \mid_{\mathbf{A}}$ $\hat{D}^{\mathbf{a}}(a) := \begin{cases} \operatorname{hot}^{\mathbf{a}}(a) & (\hat{D} = \operatorname{hot}) \\ \operatorname{cold}_{\beta}(a) & (\hat{D} = \operatorname{cold}_{\beta}) \end{cases}$ $S_{\Pi,f,L} = \operatorname{swap}(*x,*y); \operatorname{goto} L' \quad \operatorname{Ty}_{\Pi,f,L}(y) = \operatorname{mut}_{\alpha} T$ $(L: \operatorname{immut} x; \operatorname{goto} L')_{\Pi, f}$ $:= \left\{ \begin{array}{l} \forall (\boldsymbol{\Delta}_{\Pi,f,L} - \{x, \mathsf{mut}\ (|T|)\} + \{x_*, (|T|)\}).\\ \check{\varphi}_{\Pi,f,L}[\langle x_*, x_* \rangle / x] \Leftarrow \check{\varphi}_{\Pi,f,L'}[\langle x_* \rangle / x] \end{array} \right\}$ $[f, L]_{\Theta} \mathcal{F} + \{(x, \langle \hat{v}_*, \boldsymbol{x}_{\circ} \rangle), (y, \langle \hat{w}_*, \boldsymbol{y}_{\circ} \rangle)\}; \mathcal{S} \mid_{\mathbf{A}}$ readout^{**a**}_{**H**, \hat{D}}(**a*:: $T[\mu X.T/X] \mid \hat{v}; \hat{\mathcal{X}}, \hat{\mathcal{M}}$) $(\mathrm{Ty}_{\Pi,f,L}(x) = \mathsf{mut}_{\alpha} T)$ readout^a_{**H**, \hat{D}}(**a*:: $\mu X.T \mid \hat{v}; \hat{X}, \hat{\mathcal{M}}$) $\rightarrow_{\Pi} [f, L']_{\Theta} \mathcal{F} + \{ (x, \langle \hat{w}_*, \boldsymbol{x}_{\circ} \rangle), (y, \langle \hat{v}_*, \boldsymbol{y}_{\circ} \rangle) \}; \mathcal{S} \mid_{\mathbf{A}}$ $(L: \operatorname{swap}(*x, *y); \operatorname{goto} L')_{\Pi, f}$ $\mathbf{H}(a) = n$ $\operatorname{readout}_{\mathbf{H},\hat{D}}^{\mathbf{a}}(*a::\mathsf{unit} \mid (); \emptyset, \emptyset)$ $:= \begin{cases} \{ \forall (\mathbf{\Delta}_{\Pi,f,L}). \ \check{\varphi}_{\Pi,f,L} \Leftarrow \check{\varphi}_{\Pi,f,L'} [\langle *y, \circ x \rangle / x, \langle *x \rangle / y] \} & (\mathrm{Ty}_{\Pi,f,L}(y) = \mathrm{own} \, T) \\ \{ \forall (\mathbf{\Delta}_{\Pi,f,L}). \ \check{\varphi}_{\Pi,f,L} \Leftarrow \check{\varphi}_{\Pi,f,L'} [\langle *y, \circ x \rangle / x, \langle *x, \circ y \rangle / y] \} & (\mathrm{Ty}_{\Pi,f,L}(y) = \mathrm{mut}_{\alpha} \, T) \end{cases}$ readout^{**a**}_{**u**} $_{\hat{\boldsymbol{\mu}}}(*a :: \text{int} \mid n; \emptyset, \{|\hat{D}^{\mathbf{a}}(a)|\})$ $\mathbf{H}(a) = i \in [2] \quad \text{readout}_{\mathbf{H},\hat{D}}^{\mathbf{a}}(*(a+1) :: T_i \mid \hat{v}; \hat{\mathcal{X}}, \hat{\mathcal{M}}) \quad n_0 = (\#T_{1-i} - \#T_i)_{\geq 0}$ for any $k \in [n_0]$, $\mathbf{H}(a+1+\#T_i+k) = 0$ $\hat{\mathcal{M}}_0 = \{ \hat{D}^{\mathbf{a}}(a+1+\#T_i+k) \mid k \in [n_0] \}$ $(L: \mathsf{let} * y = x; \ \mathsf{goto} \ L')_{\Pi, f} := \ \left\{ \forall (\mathbf{\Delta}_{\Pi, f, L}). \ \check{\varphi}_{\Pi, f, L} \Longleftarrow \check{\varphi}_{\Pi, f, L'}[\langle x \rangle / y] \right\}$ readout^{**a**}_{**H**, \hat{D}} (**a*:: $T_0 + T_1 \mid inj_i \hat{v}; \hat{\mathcal{X}}, \hat{\mathcal{M}} \oplus \{ \hat{D}^{\mathbf{a}}(a) \} \oplus \hat{\mathcal{M}}_0$) $(L: \operatorname{let} y = *x; \operatorname{goto} L')_{\Pi, f}$ readout^{**a**}_{**H**, \hat{D}}(**a*:: $T_0 \mid \hat{v}_0; \hat{\mathcal{X}}_0, \hat{\mathcal{M}}_0$) readout^{**a**}_{**H**, \hat{D}}(*(*a* + # T_0):: $T_1 \mid \hat{v}_1; \hat{\mathcal{X}}_1, \hat{\mathcal{M}}_1$) $\operatorname{summary}_{D}^{\dagger \alpha}(\boldsymbol{x} :: T \mid \{ \operatorname{take}^{\dagger \alpha}(\boldsymbol{x} :: T) \}) \quad - \underbrace{\operatorname{summary}_{D.\check{P}}^{\mathbf{a}}(\hat{v} :: T \mid \mathcal{X})}_{T \in \mathcal{I}}$ $\left\{ \left\{ \forall (\boldsymbol{\Delta}_{\Pi,f,L}). \; \check{\varphi}_{\Pi,f,L} \Leftarrow \check{\varphi}_{\Pi,f,L'}[*x/y] \right\} \right\}$ $(Ty_{\Pi,f,L}(x) = \operatorname{own} PT)$ readout^{**a**}_{**u**, $\hat{\rho}$} (**a*:: $T_0 \times T_1 \mid (\hat{v}_0, \hat{v}_1); \hat{\mathcal{X}}_0 \oplus \hat{\mathcal{X}}_1, \hat{\mathcal{M}}_0 \oplus \hat{\mathcal{M}}_1$) summary $\overset{\mathbf{a}}{\mathcal{D}}(\langle \hat{v} \rangle :: \check{P}T \mid \mathcal{X})$ $\left\{ \forall (\mathbf{\Delta}_{\Pi,f,L}). \ \check{\varphi}_{\Pi,f,L} \longleftrightarrow \check{\varphi}_{\Pi,f,L'}[\langle **x \rangle / y] \right\}$ $(Ty_{\Pi,f,L}(x) = \operatorname{immut}_{\alpha} PT)$ $D \cdot \mathsf{own} := D \quad D \cdot \mathsf{immut}_{\beta} := \operatorname{cold}$ $(Ty_{\Pi, f, L}(x) = mut_{\alpha} \operatorname{own} T)$ $\{\forall (\mathbf{\Delta}_{\Pi,f,L}). \ \check{\varphi}_{\Pi,f,L} \longleftrightarrow \check{\varphi}_{\Pi,f,L'}[\langle **x, *\circ x \rangle / y] \}$ summary $\hat{v}_{hot}(\hat{v} :: T \mid \mathcal{X})$ summary^{**a**}_{cold} $(\hat{v} :: T \mid \mathcal{X})$ $\begin{cases} \forall (\mathbf{\Delta}_{\Pi,f,L} - \{(x, \mathsf{mut} \mathsf{box}\,(\!|T|\!|)\} + \{(x_*, \mathsf{box}\,(\!|T|\!|)\}).\\ \check{\varphi}_{\Pi,f,L}[\langle x_*, x_* \rangle / x] \Longleftarrow \check{\varphi}_{\Pi,f,L'}[x_*/y] \end{cases}$ $(Ty_{\Pi,f,L}(x) = \mathsf{mut}_{\alpha} \operatorname{immut}_{\beta} T)$ summary $_{\text{hot}}^{\mathbf{a}}(\langle \hat{v}, \boldsymbol{x} \rangle :: \text{mut}_{\beta} T \mid \mathcal{X} \oplus \{\text{give}_{\beta}(\boldsymbol{x} :: T)\})$ summary $_{\text{cold}}^{\mathbf{a}}(\langle \hat{v}, \boldsymbol{x} \rangle :: \text{mut}_{\beta} T \mid \mathcal{X})$ $\begin{cases} \forall (\boldsymbol{\Delta}_{\Pi,f,L} - \{(x, \mathsf{mut\,mut\,}(\!(T))\} \\ + \{(x_*, \mathsf{mut\,}(\!(T)), (x_{*\circ}, (\!(T))\}). \\ \check{\varphi}_{\Pi,f,L}[\langle x_*, \langle x_{*\circ}, \circ x_* \rangle \rangle / x] \\ \Leftarrow \check{\varphi}_{\Pi,f,L'}[\langle *x_*, x_{*\circ} \rangle / y] \end{cases}$ summary^{**a**}_D(\hat{v} :: $T[\mu X.T/X] \mid \mathcal{X}$) summary $_{D}^{\mathbf{a}}(const :: T \mid \emptyset)$ summary $_{D}^{\mathbf{a}}(\hat{v} :: \mu X.T/X \mid \mathcal{X})$ $(\mathrm{Ty}_{\Pi,f,L}(x) = \mathrm{mut}_{\alpha} \operatorname{mut}_{\beta} T)$ summary $_{D}^{\mathbf{a}}(\hat{v}::T_{i} \mid \mathcal{X})$ summary $_{D}^{\mathbf{a}}(\hat{v}_{0}::T_{0} \mid \mathcal{X}_{0})$ summary $_{D}^{\mathbf{a}}(\hat{v}_{1}::T_{1} \mid \mathcal{X}_{1})$ summary $_{D}^{\mathbf{a}}((\hat{v}_{0},\hat{v}_{1})::T_{0}\times T_{1} \mid \mathcal{X}_{0} \oplus \mathcal{X}_{1})$ summary $_{D}^{\mathbf{a}}(\operatorname{inj}_{i}\hat{v}::T_{0}+T_{1}\mid\mathcal{X})$

 $\frac{\mathcal{X}(\boldsymbol{x}) = \{ |\operatorname{give}_{\alpha}(\boldsymbol{x}::T), \operatorname{take}^{\dagger\beta}(\boldsymbol{x}::T') | \} \quad T \sim_{\mathbf{A}} T' \quad \alpha \leq_{\mathbf{A}} \beta}{\operatorname{safe}_{\mathbf{A}}(\boldsymbol{x},\mathcal{X})} \quad \frac{\mathcal{X}(\boldsymbol{x}) = \varnothing}{\operatorname{safe}_{\mathbf{A}}(\boldsymbol{x},\mathcal{X})}$ $\mathcal{X}(\boldsymbol{x}): \text{ the multiset of the items of form 'give}_{\gamma}(\boldsymbol{x}::U)'/\text{'take}^{\gamma}(\boldsymbol{x}::U)' \text{ in } \mathcal{X}$

- Ownership and Borrow in Rust
- Our Method
- Formalization and Correctness Proof
- Experiments and Evaluation

Implementation and Experiments

- Implemented a prototype verifier RustHorn
 - Uses MIR (mid-level intermediate representation) of the Rust compiler
 - Generates CHCs with a simple algorithm based on our method
- Conducted experiments on benchmarks
 - Tested RustHorn and SeaHorn [Gurfinkel+, 2015]
 - SeaHorn is a standard CHC-based verifier for C programs
 - Made **benchmark** verification problems in **Rust** & **C**
 - Took ones from SeaHorn and also wrote ones featuring pointers
 - Used **Z3/Spacer** [Komuravelli+, 2014] and **Holce** [Champion+, 2018] as a backend CHC solver

Experimental Results

			RustHorn		SeaHorn $w/Spacer$	
Group	Instance	Property	w/Spacer	w/HoIce	as is	modified
simple	01	safe	< 0.1	< 0.1	< 0.1	
	04-recursive	safe	0.5	timeout	0.8	
	05-recursive	unsafe	< 0.1	< 0.1	< 0.1	
	06-loop	safe	timeout	0.1	timeout	
	hhk2008	safe	timeout	40.5	< 0.1	
	unique-scalar	unsafe	< 0.1	< 0.1	< 0.1	
bmc	1	safe	0.2	< 0.1	< 0.1	
		unsafe	0.2	< 0.1	< 0.1	
	2	safe	timeout	0.1	< 0.1	
		unsafe	< 0.1	< 0.1	< 0.1	
	3	\mathbf{safe}	< 0.1	< 0.1	< 0.1	
		unsafe	< 0.1	< 0.1	< 0.1	
	diamond-1	safe	0.1	< 0.1	< 0.1	
		unsafe	< 0.1	< 0.1	< 0.1	
	diamond-2	\mathbf{safe}	0.2	< 0.1	< 0.1	
		unsafe	< 0.1	< 0.1	< 0.1	
inc-max	base	safe	< 0.1	< 0.1	false alarm	< 0.1
		unsafe	< 0.1	< 0.1	< 0.1	< 0.1
	base/3	safe	< 0.1	< 0.1	false alarm	
		unsafe	0.1	< 0.1	< 0.1	
	repeat	safe	0.1	timeout	false alarm	0.1
		unsafe	< 0.1	0.4	< 0.1	< 0.1
	repeat/3	safe	0.2	timeout	< 0.1	
		unsafe	< 0.1	1.3	<0.1	
swap-dec	base	\mathbf{safe}	< 0.1	< 0.1	false alarm	< 0.1
		unsafe	0.1	timeout	< 0.1	< 0.1
	base/3	safe	0.2	timeout	false alarm	< 0.1
		unsafe	0.4	0.9	<0.1	0.1
	exact	safe	0.1	0.5	talse alarm	timeout
		unsafe	< 0.1	26.0	< 0.1	<0.1
	exact/3	safe	timeout	timeout	talse alarm	talse alarm
		unsate	<0.1	0.4	<0.1	< 0.1

just-rec	base	safe	< 0.1	< 0.1	< 0.1	
		unsafe	< 0.1	0.1	< 0.1	
linger-dec	base	safe	< 0.1	< 0.1	false alarm	
		unsafe	< 0.1	0.1	< 0.1	
	base/3	safe	< 0.1	< 0.1	false alarm	
		unsafe	< 0.1	7.0	< 0.1	
	exact	safe	< 0.1	< 0.1	false alarm	
		unsafe	< 0.1	0.2	< 0.1	
	exact/3	safe	< 0.1	< 0.1	false alarm	
		unsafe	< 0.1	0.6	< 0.1	
lists	append	safe	tool error	< 0.1	false alarm	
		unsafe	tool error	0.2	0.1	
	inc-all	safe	tool error	< 0.1	false alarm	
		unsafe	tool error	0.3	< 0.1	
	inc-some	safe	tool error	< 0.1	false alarm	
		unsafe	tool error	0.3	0.1	
	inc-some/2	safe	tool error	timeout	false alarm	
		unsafe	tool error	0.3	0.4	
trees	append-t	\mathbf{safe}	tool error	< 0.1	timeout	
		unsafe	tool error	0.3	0.1	
	inc-all-t	safe	tool error	timeout	timeout	
		unsafe	tool error	0.1	< 0.1	
	inc-some-t	safe	tool error	timeout	timeout	
		unsafe	tool error	0.3	0.1	
	inc-some/2-t	safe	tool error	timeout	false alarm	
		unsafe	tool error	0.4	0.1	

Table 1. Benchmarks and experimental results on RustHorn and SeaHorn, with Spacer/Z3 and HoIce. "timeout" denotes timeout of 180 seconds; "false alarm" means reporting 'unsafe' for a safe program; "tool error" is a tool error of Spacer, which currently does not deal with recursive types well.

- RustHorn+Holce handles recursive data types quite well
- The output of RustHorn is very reliable
- RustHorn is well comparable to SeaHorn in performance

Conclusion

- Novel translation from Rust programs to CHCs
 - Models a mutable reference as a pair of the current value and the future value, reminiscent of a prophecy variable
 - Applicable to a wide class of Rust programs
 - We formalized and proved its correctness and confirmed the effectiveness by experiments

We believe that this work establishes the foundation of **verification leveraging borrow-based ownership**.

full paper: arxiv.org/abs/2002.09002